BTO publishes peer-reviewed papers in a wide range of scientific journals, both independently and with our partners. If you are unable to access a scientific paper by a BTO author, please contact us. Search settings Search Order by: Order by Latest Oldest Filter by: BTO Author Species Partners Publication Year Project Region Science topic BTO Author Adham Ashton-ButtAilidh BarnesAli JohnstonAllison KewAmanda TraskAmy ChallisAndrew DobsonAndrew JoysAndy ClementsAndy MusgroveAnna RenwickAnne CottonAnthony WetherhillAonghais CookBen DarvillBjörn BeckmannBlaise MartayBob SwannBrian EtheridgeBridget GriffinCallum MacgregorCarl BarimoreCaroline BrightonCat MorrisonCatharine HorswillCharlotte WattsChas HoltChris HewsonChris PollockChris ThaxterChris WernhamClaire BoothbyClare SimmDan ChamberlainDaniel JohnstonDaria DadamDario MassiminoDavid DouglasDavid JarrettDavid NobleDavid NorfolkDawn BalmerDiana de PalacioDorian MossEllie LeechEmily ScraggEmma CaulfieldEsther KettelGary ClewleyGavin SiriwardenaGraham AppletonGraham AustinGreg ConwayHannah HerewardHarry EwingHazel McCambridgeHeidi MellanHenrietta PringleHugh HanmerIain DownieIan HendersonIan WoodwardJacob DaviesJacquie ClarkJames BrayJames ClarkeJames HeywoodJames Pearce-HigginsJennifer BorderJeremy SmithJez BlackburnJoe CooperJohn CalladineJohn MarchantJuliet VickeryKaren WrightKate PlummerKate RiselyKatharine BowgenKatherine Booth JonesKelvin JonesKev LeightonLee BarberLiz HumphreysLucy WrightMadeleine BartonMáire KirklandMandy CookMark GranthamMark HulmeMark MillerMark RehfischMark WilsonMartin SullivanMike TomsNancy OckendonNeil CalbradeNiall BurtonNick MoranNicola BuggNigel ClarkNina O’HanlonPaul NoyesPeadar O'ConnellPeter LackPhil AtkinsonPhilipp Boersch-SupanRachel TaylorRob FullerRob RobinsonRobert JaquesRos GreenRuth WalkerSabine SchäeferSamantha FranksSamuel LangloisSarah EglingtonSarah HarrisShane WolseySimon GillingsSophie BennettStaffan RoosStephen BaillieStephen McAvoyStuart NewsonSu GoughTeresa FrostTim HarrisonViola Ross-Smith Species Arctic SkuaArctic TernAvocetBadgerBar-tailed GodwitBarnacle GooseBatsBewick’s SwanBlack GrouseBlack GuillemotBlack RatBlack-headed GullBlack-tailed GodwitBlack-throated DiverBlackbirdBlackcapBlue TitBrown RatButterflies and mothsBuzzardCanada GooseCarrion CrowChaffinchChiffchaffChoughCommon GullCommon NighthawkCommon TernCormorantCorn BuntingCuckooCurlewCurlew SandpiperDunlinEdible DormouseEiderFieldfareFulmarGannetGatekeeperGolden EagleGolden OrioleGolden PloverGoldeneyeGoldfinchGoosanderGoshawkGreat Black-backed GullGreat Crested GrebeGreat Northern DiverGreat SkuaGreat TitGreater Spotted EagleGreen-veined WhiteGreenfinchGreenshankGrey PloverGuillemotHarvest MouseHazel DormouseHerring GullHobbyHooded CrowHouse MartinHouse MouseHouse SparrowInvertebratesJayKittiwakeKnotLapwingLeach’s PetrelLesser Black-backed GullLesser Spotted WoodpeckerLinnetLittle OwlLittle Ringed PloverLittle TernLong-tailed DuckLong-tailed TitMagpieMallardMammalsManx ShearwaterMarsh TitMediterranean GullMontagu’s HarrierMoorhenNightingaleNightjarNuthatchOriental CuckooOystercatcherPeregrinePheasantPied FlycatcherPuffinPurple SandpiperRavenRazorbillRed-backed ShrikeRed-breasted MerganserRed-legged PartridgeRed-throated DiverRedshankRedstartRedwingRing-necked ParakeetRinged PloverRookRoseate TernRuffSanderlingSandwich TernSemipalmated SandpiperSerinShagShelduckShort-eared OwlShort-toed TreecreeperSiskinSkylarkSlavonian GrebeSmall WhiteSmewSnipeSong ThrushSpotted FlycatcherSpotted RedshankStarlingStorm PetrelSwallowSwiftTawny OwlTealTemminck’s StintTree PipitTree SparrowTurnstoneTurtle DoveVelvet ScoterWhimbrelWhinchatWhite StorkWhite-fronted GooseWhite-tailed EagleWillow TitWillow WarblerWood mouseWood WarblerWoodcockWoodpigeonWrenWryneckYellow-browed WarblerYellow-legged GullYellow-necked Mouse Partners BTO DAERA JNCC Natural England NatureScot RSPB From year Choose2025202420232022202120202019201820172016201520142013201220112010200920082007200620052004200320022001200019991998199719961995 To year Choose2025202420232022202120202019201820172016201520142013201220112010200920082007200620052004200320022001200019991998199719961995 Month Month ChooseJanFebMarAprMayJunJulAugSepOctNovDec Day Day Choose12345678910111213141516171819202122232425262728293031 Project ChooseBird Ringing SchemeBirds in GreenspacesBirdTrackBlackbirds in GardensBreeding Bird Survey (BBS)BTO Acoustic PipelineCuckoo Tracking ProjectCudyll Cymru – Monitoring Raptors in WalesCudyll Cymru – Monitoring Raptors in Wales (Cymraeg)Gamekeeper Wader TransectsGarden Bird Feeding SurveyGarden BirdWatchGarden Wildlife HealthGoose and Swan Monitoring ProgrammeHeathland Birds SurveyHeronries CensusNest Record SchemeNesting NeighboursSeabird Monitoring ProgrammeVolunteer Mountain Hare SurveyWader CalendarWaterways Breeding Bird SurveyWetland Bird Survey (WeBS)Winter Bird SurveyWoodcock Survey Region UK East of England South East England East Midlands South West Ireland London West Midlands Island territories North East Yorkshire and the Humber Northern Ireland North West Scotland Wales Science topic Biodiversity Birds and people Climate change Conservation Demographics Farmland Grassland Habitats International Marine Migration Monitoring Non-natives Other wildlife Population dynamics Predators Renewables Species interactions Technology Tracking Upland Urban Wetland Wildlife health Woodland Search Reset Neglected issues in using weather and climate information in ecology and biogeography Author: Baker, D. J., Hartley, A. J., Pearce-Higgins, J. W., Jones, R. G., & Willis, S. G. Published: 2017 19.01.17 Papers Doses of neighborhood nature: the benefits for mental health of living with nature Author: Cox, D.T.C., Shanahan, D.F., Hudson, H.L., Plummer, K.E., Siriwardena, G.M., Fuller, R.A., Anderson, K., Hancock, S. & Gaston, K.J. Published: 2017 Experiences of nature provide many mental-health benefits, particularly for people living in urban areas. The natural characteristics of city residents’ neighborhoods are likely to be crucial determinants of the daily nature dose that they receive; however, which characteristics are important remains unclear. One possibility is that the greatest benefits are provided by characteristics that are most visible during the day and so most likely to be experienced by people. We demonstrate that of five neighborhood nature characteristics tested, vegetation cover and afternoon bird abundances were positively associated with a lower prevalence of depression, anxiety, and stress. Furthermore, dose–response modeling shows a threshold response at which the population prevalence of mental-health issues is significantly lower beyond minimum limits of neighborhood vegetation cover (depression more than 20% cover, anxiety more than 30% cover, stress more than 20% cover). Our findings demonstrate quantifiable associations of mental health with the characteristics of nearby nature that people actually experience. 13.01.17 Papers Large extents of intensive land use limit community reorganization during climate warming Author: Oliver, T.H., Gillings, S., Pearce-Higgins, J.W., Brereton, T., Crick, H.Q.P., Duffield, S.J., Morecroft, M.D. & Roy, D.B. Published: 2017 Fifty years ago, volunteers began annual breeding bird surveys in woodlands as part of the Common Bird Census. Few probably would have anticipated the enormous changes the bird communities in those woodlands have shown, but their data have been a gold-mine for understanding how the many guises of environmental change are impacting birds. In our latest study we worked with colleagues at the University of Reading, Centre for Ecology and Hydrology, Butterfly Conservation and Natural England to assess how climate change and habitat interact to affect bird and butterfly populations. As climate warms, we expect species that are tolerant of warm climates to be least affected, or indeed to benefit in areas that were formerly too cold for them. Conversely, species that prefer cold climates are expected to fare poorly, perhaps by declining or retreating from warming areas. Following previous studies, we used the Species Temperature Index (STI), which corresponds to the average temperature across the European range of each species, to rank bird and butterfly species from cold-associated (e.g. Meadow Pipit, Willow Warbler, Chequered Skipper, Northern Brown Argus) to warm-associated (e.g. Cetti’s Warbler, Stonechat, Lulworth Skipper, Gatekeeper). Several studies have combined these STI values with the species’ population trends at individual sites to produce a composite “Community Temperature Index” (CTI). Most studies find this CTI is increasing, which is usually taken to mean that the community is increasingly dominated by species that prefer warm conditions. We took this further by looking separately at how the different species in the communities are faring. Although the bird community CTIs had increased, changes for constituent species weren’t as predicted. For example, the top 25% of birds as ranked by warmth-association had not increased as predicted but had declined on average. The overall increase in bird CTI was driven by a large decline in the abundance of the most cold-associated species and an increase for moderately warm-associated species. Importantly, the extent of the declines of the most cold- and warm-associated species was related to the amount of intensively managed land surrounding the monitored woodlands. This suggests that the lack of natural habitat in the surroundings makes it harder for cold-associated birds to find cool corners of sites, or to disperse away from warming regions. Butterfly results were subtly different but with similar conclusions about the role of intensively managed land. This provides a clear recommendation to land managers and conservation agencies – creating larger natural areas in strategic places will help species to cope with the changing climate. 11.01.17 Papers Towards a framework for quantifying the population-level consequences of anthropogenic pressures on the environment: The case of seabirds and windfarms Author: Cook, A.S.C.P. & Robinson, R.A. Published: 2017 Renewable energy is a key part of strategies to reduce the effects of climate change. However, there are concerns about the potential impacts of large renewable developments, such as offshore wind farms, on wildlife. A significant amount of research has been directed at understanding how these developments may affect marine wildlife, particularly seabirds. Key impacts on seabirds are likely to include increased mortality through collisions with wind turbines, and displacement from preferred foraging areas. However, whilst we can estimate what impact any development may have at an individual level, understanding what this means for the population as a whole is more complex. New research led by Aonghais Cook of the BTO has tested a variety of analytical tools, or models, to assess the likely population-level consequences of the impacts arising from any individual wind farm development. These include tools predicting the likelihood of a given outcome (e.g. the probability of a 25% decline) and those that compare scenarios with and without the development. The results demonstrate that conclusions about the significance of any population-level consequences differ according to the initial assumptions made about a seabird species’ survival, breeding success and population trend. The effect of these assumptions is particularly noticeable for approaches that predict the likelihood of a given outcome. In a world where our knowledge of wildlife populations is often imperfect, this may lead to situations where conclusions about the significance of any population-level impacts are driven by how knowledgeable we are about the population concerned, rather than by the magnitude of any impact. This research suggests that future assessments should compare the outputs of models considering scenarios for wildlife with and without any wind farm development. However, given that our knowledge of the population concerned can influence our conclusions, it is important that all assumptions used in the modelling are clearly stated. Judgement of whether any population-level consequences can be deemed acceptable should then be made with reference to our knowledge of the species concerned and its local, regional, national and international populations, ensuring that decisions about offshore wind farm development are made in the best possible way for wildlife. 05.01.17 Papers The seabird wreck in the Bay of Biscay and South-Western Approaches in 2014: A review of reported mortality Author: Morley, T.I., Fayet, A.L., Jessop, H., Veron, P., Veron, N., Clark, J.A., Wood, M.J. Published: 2016 31.12.16 Papers View this paper online An indicator highlights seasonal variation in the response of Lepidoptera communities to warming Author: Martay, B., Monteith, D.T., Brewer, M.J., Brereton, T., Shortall, C.R. & Pearce-Higgins, J.W. Published: 2016 As the effects of climate change are becoming ever more evident and widespread, methods to measure the impact on ecological communities and to understand how such impacts occur are more valuable. Recently published research, led by the BTO in collaboration with the Centre for Ecology and Hydrology, BioSS, Butterfly Conservation and Rothamsted Research, describes the development of a new indicator for detecting the effect of climate change in British butterflies and moths, which also provides new insights into when species are most sensitive to change. Data from the UK Butterfly Monitoring Scheme and the Rothamsted Insect Survey were used to calculate population trends over a 35 year period and to model each species’ population response to seasonal temperatures. These estimates of species’ responses to temperature can be used to describe communities according to how they have been shaped by temperature - the Community Temperature Response (CTR). A rise in CTR occurs when populations of species which ‘do better’ in warmer conditions increase in abundance more than populations of species whose populations ‘like’ it cold. Using twenty years of butterfly and moth data from twelve UK Environmental Change Network sites run by the Centre for Ecology and Hydrology we tested whether this indicator could track spatial and temporal climate-driven community change. The authors, led by Blaise Martay, predicted that moth and butterfly communities in warmer sites and years would contain more individuals of species that increase in response to rising temperatures, than those in the colder sites and years. Although they didn’t find this relationship if species’ response to annual temperature was used to describe the community, they instead found that communities were shaped by seasonal temperatures. In particular, moth communities were influenced most by summer temperature while winter temperature was the strongest driver of butterfly communities. Importantly, this shows that the CTR indicator can effectively indicate the biological impacts of climate change over time. Seasonal as well as annual temperatures must therefore be considered when predicting species’ vulnerability to climate change. It has been previously assumed that British butterflies will be fairly resilient to climate change because temperatures in Britain are colder than in much of their European range and populations tend to increase in response to warmer summer weather. However, as winter temperatures were found to be the main driver of butterfly community change, British butterflies may be more vulnerable to climate change than previously thought. 19.12.16 Papers View this paper online A novel method for quantifying overdispersion in count data and its application to farmland birds Author: Mcmahon, B.J., Purvis, G., Sheridan, H., Siriwardena, G.M. & Parnell, A.C. Published: 2016 19.12.16 Papers Pagination First page First Previous page Previous … Page 58 Page 59 Page 60 Page 61 Page 62 Page 63 Page 64 Page 65 Page 66 … Next page Next Last page Last
Search settings Search Order by: Order by Latest Oldest Filter by: BTO Author Species Partners Publication Year Project Region Science topic BTO Author Adham Ashton-ButtAilidh BarnesAli JohnstonAllison KewAmanda TraskAmy ChallisAndrew DobsonAndrew JoysAndy ClementsAndy MusgroveAnna RenwickAnne CottonAnthony WetherhillAonghais CookBen DarvillBjörn BeckmannBlaise MartayBob SwannBrian EtheridgeBridget GriffinCallum MacgregorCarl BarimoreCaroline BrightonCat MorrisonCatharine HorswillCharlotte WattsChas HoltChris HewsonChris PollockChris ThaxterChris WernhamClaire BoothbyClare SimmDan ChamberlainDaniel JohnstonDaria DadamDario MassiminoDavid DouglasDavid JarrettDavid NobleDavid NorfolkDawn BalmerDiana de PalacioDorian MossEllie LeechEmily ScraggEmma CaulfieldEsther KettelGary ClewleyGavin SiriwardenaGraham AppletonGraham AustinGreg ConwayHannah HerewardHarry EwingHazel McCambridgeHeidi MellanHenrietta PringleHugh HanmerIain DownieIan HendersonIan WoodwardJacob DaviesJacquie ClarkJames BrayJames ClarkeJames HeywoodJames Pearce-HigginsJennifer BorderJeremy SmithJez BlackburnJoe CooperJohn CalladineJohn MarchantJuliet VickeryKaren WrightKate PlummerKate RiselyKatharine BowgenKatherine Booth JonesKelvin JonesKev LeightonLee BarberLiz HumphreysLucy WrightMadeleine BartonMáire KirklandMandy CookMark GranthamMark HulmeMark MillerMark RehfischMark WilsonMartin SullivanMike TomsNancy OckendonNeil CalbradeNiall BurtonNick MoranNicola BuggNigel ClarkNina O’HanlonPaul NoyesPeadar O'ConnellPeter LackPhil AtkinsonPhilipp Boersch-SupanRachel TaylorRob FullerRob RobinsonRobert JaquesRos GreenRuth WalkerSabine SchäeferSamantha FranksSamuel LangloisSarah EglingtonSarah HarrisShane WolseySimon GillingsSophie BennettStaffan RoosStephen BaillieStephen McAvoyStuart NewsonSu GoughTeresa FrostTim HarrisonViola Ross-Smith Species Arctic SkuaArctic TernAvocetBadgerBar-tailed GodwitBarnacle GooseBatsBewick’s SwanBlack GrouseBlack GuillemotBlack RatBlack-headed GullBlack-tailed GodwitBlack-throated DiverBlackbirdBlackcapBlue TitBrown RatButterflies and mothsBuzzardCanada GooseCarrion CrowChaffinchChiffchaffChoughCommon GullCommon NighthawkCommon TernCormorantCorn BuntingCuckooCurlewCurlew SandpiperDunlinEdible DormouseEiderFieldfareFulmarGannetGatekeeperGolden EagleGolden OrioleGolden PloverGoldeneyeGoldfinchGoosanderGoshawkGreat Black-backed GullGreat Crested GrebeGreat Northern DiverGreat SkuaGreat TitGreater Spotted EagleGreen-veined WhiteGreenfinchGreenshankGrey PloverGuillemotHarvest MouseHazel DormouseHerring GullHobbyHooded CrowHouse MartinHouse MouseHouse SparrowInvertebratesJayKittiwakeKnotLapwingLeach’s PetrelLesser Black-backed GullLesser Spotted WoodpeckerLinnetLittle OwlLittle Ringed PloverLittle TernLong-tailed DuckLong-tailed TitMagpieMallardMammalsManx ShearwaterMarsh TitMediterranean GullMontagu’s HarrierMoorhenNightingaleNightjarNuthatchOriental CuckooOystercatcherPeregrinePheasantPied FlycatcherPuffinPurple SandpiperRavenRazorbillRed-backed ShrikeRed-breasted MerganserRed-legged PartridgeRed-throated DiverRedshankRedstartRedwingRing-necked ParakeetRinged PloverRookRoseate TernRuffSanderlingSandwich TernSemipalmated SandpiperSerinShagShelduckShort-eared OwlShort-toed TreecreeperSiskinSkylarkSlavonian GrebeSmall WhiteSmewSnipeSong ThrushSpotted FlycatcherSpotted RedshankStarlingStorm PetrelSwallowSwiftTawny OwlTealTemminck’s StintTree PipitTree SparrowTurnstoneTurtle DoveVelvet ScoterWhimbrelWhinchatWhite StorkWhite-fronted GooseWhite-tailed EagleWillow TitWillow WarblerWood mouseWood WarblerWoodcockWoodpigeonWrenWryneckYellow-browed WarblerYellow-legged GullYellow-necked Mouse Partners BTO DAERA JNCC Natural England NatureScot RSPB From year Choose2025202420232022202120202019201820172016201520142013201220112010200920082007200620052004200320022001200019991998199719961995 To year Choose2025202420232022202120202019201820172016201520142013201220112010200920082007200620052004200320022001200019991998199719961995 Month Month ChooseJanFebMarAprMayJunJulAugSepOctNovDec Day Day Choose12345678910111213141516171819202122232425262728293031 Project ChooseBird Ringing SchemeBirds in GreenspacesBirdTrackBlackbirds in GardensBreeding Bird Survey (BBS)BTO Acoustic PipelineCuckoo Tracking ProjectCudyll Cymru – Monitoring Raptors in WalesCudyll Cymru – Monitoring Raptors in Wales (Cymraeg)Gamekeeper Wader TransectsGarden Bird Feeding SurveyGarden BirdWatchGarden Wildlife HealthGoose and Swan Monitoring ProgrammeHeathland Birds SurveyHeronries CensusNest Record SchemeNesting NeighboursSeabird Monitoring ProgrammeVolunteer Mountain Hare SurveyWader CalendarWaterways Breeding Bird SurveyWetland Bird Survey (WeBS)Winter Bird SurveyWoodcock Survey Region UK East of England South East England East Midlands South West Ireland London West Midlands Island territories North East Yorkshire and the Humber Northern Ireland North West Scotland Wales Science topic Biodiversity Birds and people Climate change Conservation Demographics Farmland Grassland Habitats International Marine Migration Monitoring Non-natives Other wildlife Population dynamics Predators Renewables Species interactions Technology Tracking Upland Urban Wetland Wildlife health Woodland Search Reset Neglected issues in using weather and climate information in ecology and biogeography Author: Baker, D. J., Hartley, A. J., Pearce-Higgins, J. W., Jones, R. G., & Willis, S. G. Published: 2017 19.01.17 Papers Doses of neighborhood nature: the benefits for mental health of living with nature Author: Cox, D.T.C., Shanahan, D.F., Hudson, H.L., Plummer, K.E., Siriwardena, G.M., Fuller, R.A., Anderson, K., Hancock, S. & Gaston, K.J. Published: 2017 Experiences of nature provide many mental-health benefits, particularly for people living in urban areas. The natural characteristics of city residents’ neighborhoods are likely to be crucial determinants of the daily nature dose that they receive; however, which characteristics are important remains unclear. One possibility is that the greatest benefits are provided by characteristics that are most visible during the day and so most likely to be experienced by people. We demonstrate that of five neighborhood nature characteristics tested, vegetation cover and afternoon bird abundances were positively associated with a lower prevalence of depression, anxiety, and stress. Furthermore, dose–response modeling shows a threshold response at which the population prevalence of mental-health issues is significantly lower beyond minimum limits of neighborhood vegetation cover (depression more than 20% cover, anxiety more than 30% cover, stress more than 20% cover). Our findings demonstrate quantifiable associations of mental health with the characteristics of nearby nature that people actually experience. 13.01.17 Papers Large extents of intensive land use limit community reorganization during climate warming Author: Oliver, T.H., Gillings, S., Pearce-Higgins, J.W., Brereton, T., Crick, H.Q.P., Duffield, S.J., Morecroft, M.D. & Roy, D.B. Published: 2017 Fifty years ago, volunteers began annual breeding bird surveys in woodlands as part of the Common Bird Census. Few probably would have anticipated the enormous changes the bird communities in those woodlands have shown, but their data have been a gold-mine for understanding how the many guises of environmental change are impacting birds. In our latest study we worked with colleagues at the University of Reading, Centre for Ecology and Hydrology, Butterfly Conservation and Natural England to assess how climate change and habitat interact to affect bird and butterfly populations. As climate warms, we expect species that are tolerant of warm climates to be least affected, or indeed to benefit in areas that were formerly too cold for them. Conversely, species that prefer cold climates are expected to fare poorly, perhaps by declining or retreating from warming areas. Following previous studies, we used the Species Temperature Index (STI), which corresponds to the average temperature across the European range of each species, to rank bird and butterfly species from cold-associated (e.g. Meadow Pipit, Willow Warbler, Chequered Skipper, Northern Brown Argus) to warm-associated (e.g. Cetti’s Warbler, Stonechat, Lulworth Skipper, Gatekeeper). Several studies have combined these STI values with the species’ population trends at individual sites to produce a composite “Community Temperature Index” (CTI). Most studies find this CTI is increasing, which is usually taken to mean that the community is increasingly dominated by species that prefer warm conditions. We took this further by looking separately at how the different species in the communities are faring. Although the bird community CTIs had increased, changes for constituent species weren’t as predicted. For example, the top 25% of birds as ranked by warmth-association had not increased as predicted but had declined on average. The overall increase in bird CTI was driven by a large decline in the abundance of the most cold-associated species and an increase for moderately warm-associated species. Importantly, the extent of the declines of the most cold- and warm-associated species was related to the amount of intensively managed land surrounding the monitored woodlands. This suggests that the lack of natural habitat in the surroundings makes it harder for cold-associated birds to find cool corners of sites, or to disperse away from warming regions. Butterfly results were subtly different but with similar conclusions about the role of intensively managed land. This provides a clear recommendation to land managers and conservation agencies – creating larger natural areas in strategic places will help species to cope with the changing climate. 11.01.17 Papers Towards a framework for quantifying the population-level consequences of anthropogenic pressures on the environment: The case of seabirds and windfarms Author: Cook, A.S.C.P. & Robinson, R.A. Published: 2017 Renewable energy is a key part of strategies to reduce the effects of climate change. However, there are concerns about the potential impacts of large renewable developments, such as offshore wind farms, on wildlife. A significant amount of research has been directed at understanding how these developments may affect marine wildlife, particularly seabirds. Key impacts on seabirds are likely to include increased mortality through collisions with wind turbines, and displacement from preferred foraging areas. However, whilst we can estimate what impact any development may have at an individual level, understanding what this means for the population as a whole is more complex. New research led by Aonghais Cook of the BTO has tested a variety of analytical tools, or models, to assess the likely population-level consequences of the impacts arising from any individual wind farm development. These include tools predicting the likelihood of a given outcome (e.g. the probability of a 25% decline) and those that compare scenarios with and without the development. The results demonstrate that conclusions about the significance of any population-level consequences differ according to the initial assumptions made about a seabird species’ survival, breeding success and population trend. The effect of these assumptions is particularly noticeable for approaches that predict the likelihood of a given outcome. In a world where our knowledge of wildlife populations is often imperfect, this may lead to situations where conclusions about the significance of any population-level impacts are driven by how knowledgeable we are about the population concerned, rather than by the magnitude of any impact. This research suggests that future assessments should compare the outputs of models considering scenarios for wildlife with and without any wind farm development. However, given that our knowledge of the population concerned can influence our conclusions, it is important that all assumptions used in the modelling are clearly stated. Judgement of whether any population-level consequences can be deemed acceptable should then be made with reference to our knowledge of the species concerned and its local, regional, national and international populations, ensuring that decisions about offshore wind farm development are made in the best possible way for wildlife. 05.01.17 Papers The seabird wreck in the Bay of Biscay and South-Western Approaches in 2014: A review of reported mortality Author: Morley, T.I., Fayet, A.L., Jessop, H., Veron, P., Veron, N., Clark, J.A., Wood, M.J. Published: 2016 31.12.16 Papers View this paper online An indicator highlights seasonal variation in the response of Lepidoptera communities to warming Author: Martay, B., Monteith, D.T., Brewer, M.J., Brereton, T., Shortall, C.R. & Pearce-Higgins, J.W. Published: 2016 As the effects of climate change are becoming ever more evident and widespread, methods to measure the impact on ecological communities and to understand how such impacts occur are more valuable. Recently published research, led by the BTO in collaboration with the Centre for Ecology and Hydrology, BioSS, Butterfly Conservation and Rothamsted Research, describes the development of a new indicator for detecting the effect of climate change in British butterflies and moths, which also provides new insights into when species are most sensitive to change. Data from the UK Butterfly Monitoring Scheme and the Rothamsted Insect Survey were used to calculate population trends over a 35 year period and to model each species’ population response to seasonal temperatures. These estimates of species’ responses to temperature can be used to describe communities according to how they have been shaped by temperature - the Community Temperature Response (CTR). A rise in CTR occurs when populations of species which ‘do better’ in warmer conditions increase in abundance more than populations of species whose populations ‘like’ it cold. Using twenty years of butterfly and moth data from twelve UK Environmental Change Network sites run by the Centre for Ecology and Hydrology we tested whether this indicator could track spatial and temporal climate-driven community change. The authors, led by Blaise Martay, predicted that moth and butterfly communities in warmer sites and years would contain more individuals of species that increase in response to rising temperatures, than those in the colder sites and years. Although they didn’t find this relationship if species’ response to annual temperature was used to describe the community, they instead found that communities were shaped by seasonal temperatures. In particular, moth communities were influenced most by summer temperature while winter temperature was the strongest driver of butterfly communities. Importantly, this shows that the CTR indicator can effectively indicate the biological impacts of climate change over time. Seasonal as well as annual temperatures must therefore be considered when predicting species’ vulnerability to climate change. It has been previously assumed that British butterflies will be fairly resilient to climate change because temperatures in Britain are colder than in much of their European range and populations tend to increase in response to warmer summer weather. However, as winter temperatures were found to be the main driver of butterfly community change, British butterflies may be more vulnerable to climate change than previously thought. 19.12.16 Papers View this paper online A novel method for quantifying overdispersion in count data and its application to farmland birds Author: Mcmahon, B.J., Purvis, G., Sheridan, H., Siriwardena, G.M. & Parnell, A.C. Published: 2016 19.12.16 Papers Pagination First page First Previous page Previous … Page 58 Page 59 Page 60 Page 61 Page 62 Page 63 Page 64 Page 65 Page 66 … Next page Next Last page Last
Neglected issues in using weather and climate information in ecology and biogeography Author: Baker, D. J., Hartley, A. J., Pearce-Higgins, J. W., Jones, R. G., & Willis, S. G. Published: 2017 19.01.17 Papers
Doses of neighborhood nature: the benefits for mental health of living with nature Author: Cox, D.T.C., Shanahan, D.F., Hudson, H.L., Plummer, K.E., Siriwardena, G.M., Fuller, R.A., Anderson, K., Hancock, S. & Gaston, K.J. Published: 2017 Experiences of nature provide many mental-health benefits, particularly for people living in urban areas. The natural characteristics of city residents’ neighborhoods are likely to be crucial determinants of the daily nature dose that they receive; however, which characteristics are important remains unclear. One possibility is that the greatest benefits are provided by characteristics that are most visible during the day and so most likely to be experienced by people. We demonstrate that of five neighborhood nature characteristics tested, vegetation cover and afternoon bird abundances were positively associated with a lower prevalence of depression, anxiety, and stress. Furthermore, dose–response modeling shows a threshold response at which the population prevalence of mental-health issues is significantly lower beyond minimum limits of neighborhood vegetation cover (depression more than 20% cover, anxiety more than 30% cover, stress more than 20% cover). Our findings demonstrate quantifiable associations of mental health with the characteristics of nearby nature that people actually experience. 13.01.17 Papers
Large extents of intensive land use limit community reorganization during climate warming Author: Oliver, T.H., Gillings, S., Pearce-Higgins, J.W., Brereton, T., Crick, H.Q.P., Duffield, S.J., Morecroft, M.D. & Roy, D.B. Published: 2017 Fifty years ago, volunteers began annual breeding bird surveys in woodlands as part of the Common Bird Census. Few probably would have anticipated the enormous changes the bird communities in those woodlands have shown, but their data have been a gold-mine for understanding how the many guises of environmental change are impacting birds. In our latest study we worked with colleagues at the University of Reading, Centre for Ecology and Hydrology, Butterfly Conservation and Natural England to assess how climate change and habitat interact to affect bird and butterfly populations. As climate warms, we expect species that are tolerant of warm climates to be least affected, or indeed to benefit in areas that were formerly too cold for them. Conversely, species that prefer cold climates are expected to fare poorly, perhaps by declining or retreating from warming areas. Following previous studies, we used the Species Temperature Index (STI), which corresponds to the average temperature across the European range of each species, to rank bird and butterfly species from cold-associated (e.g. Meadow Pipit, Willow Warbler, Chequered Skipper, Northern Brown Argus) to warm-associated (e.g. Cetti’s Warbler, Stonechat, Lulworth Skipper, Gatekeeper). Several studies have combined these STI values with the species’ population trends at individual sites to produce a composite “Community Temperature Index” (CTI). Most studies find this CTI is increasing, which is usually taken to mean that the community is increasingly dominated by species that prefer warm conditions. We took this further by looking separately at how the different species in the communities are faring. Although the bird community CTIs had increased, changes for constituent species weren’t as predicted. For example, the top 25% of birds as ranked by warmth-association had not increased as predicted but had declined on average. The overall increase in bird CTI was driven by a large decline in the abundance of the most cold-associated species and an increase for moderately warm-associated species. Importantly, the extent of the declines of the most cold- and warm-associated species was related to the amount of intensively managed land surrounding the monitored woodlands. This suggests that the lack of natural habitat in the surroundings makes it harder for cold-associated birds to find cool corners of sites, or to disperse away from warming regions. Butterfly results were subtly different but with similar conclusions about the role of intensively managed land. This provides a clear recommendation to land managers and conservation agencies – creating larger natural areas in strategic places will help species to cope with the changing climate. 11.01.17 Papers
Towards a framework for quantifying the population-level consequences of anthropogenic pressures on the environment: The case of seabirds and windfarms Author: Cook, A.S.C.P. & Robinson, R.A. Published: 2017 Renewable energy is a key part of strategies to reduce the effects of climate change. However, there are concerns about the potential impacts of large renewable developments, such as offshore wind farms, on wildlife. A significant amount of research has been directed at understanding how these developments may affect marine wildlife, particularly seabirds. Key impacts on seabirds are likely to include increased mortality through collisions with wind turbines, and displacement from preferred foraging areas. However, whilst we can estimate what impact any development may have at an individual level, understanding what this means for the population as a whole is more complex. New research led by Aonghais Cook of the BTO has tested a variety of analytical tools, or models, to assess the likely population-level consequences of the impacts arising from any individual wind farm development. These include tools predicting the likelihood of a given outcome (e.g. the probability of a 25% decline) and those that compare scenarios with and without the development. The results demonstrate that conclusions about the significance of any population-level consequences differ according to the initial assumptions made about a seabird species’ survival, breeding success and population trend. The effect of these assumptions is particularly noticeable for approaches that predict the likelihood of a given outcome. In a world where our knowledge of wildlife populations is often imperfect, this may lead to situations where conclusions about the significance of any population-level impacts are driven by how knowledgeable we are about the population concerned, rather than by the magnitude of any impact. This research suggests that future assessments should compare the outputs of models considering scenarios for wildlife with and without any wind farm development. However, given that our knowledge of the population concerned can influence our conclusions, it is important that all assumptions used in the modelling are clearly stated. Judgement of whether any population-level consequences can be deemed acceptable should then be made with reference to our knowledge of the species concerned and its local, regional, national and international populations, ensuring that decisions about offshore wind farm development are made in the best possible way for wildlife. 05.01.17 Papers
The seabird wreck in the Bay of Biscay and South-Western Approaches in 2014: A review of reported mortality Author: Morley, T.I., Fayet, A.L., Jessop, H., Veron, P., Veron, N., Clark, J.A., Wood, M.J. Published: 2016 31.12.16 Papers View this paper online
An indicator highlights seasonal variation in the response of Lepidoptera communities to warming Author: Martay, B., Monteith, D.T., Brewer, M.J., Brereton, T., Shortall, C.R. & Pearce-Higgins, J.W. Published: 2016 As the effects of climate change are becoming ever more evident and widespread, methods to measure the impact on ecological communities and to understand how such impacts occur are more valuable. Recently published research, led by the BTO in collaboration with the Centre for Ecology and Hydrology, BioSS, Butterfly Conservation and Rothamsted Research, describes the development of a new indicator for detecting the effect of climate change in British butterflies and moths, which also provides new insights into when species are most sensitive to change. Data from the UK Butterfly Monitoring Scheme and the Rothamsted Insect Survey were used to calculate population trends over a 35 year period and to model each species’ population response to seasonal temperatures. These estimates of species’ responses to temperature can be used to describe communities according to how they have been shaped by temperature - the Community Temperature Response (CTR). A rise in CTR occurs when populations of species which ‘do better’ in warmer conditions increase in abundance more than populations of species whose populations ‘like’ it cold. Using twenty years of butterfly and moth data from twelve UK Environmental Change Network sites run by the Centre for Ecology and Hydrology we tested whether this indicator could track spatial and temporal climate-driven community change. The authors, led by Blaise Martay, predicted that moth and butterfly communities in warmer sites and years would contain more individuals of species that increase in response to rising temperatures, than those in the colder sites and years. Although they didn’t find this relationship if species’ response to annual temperature was used to describe the community, they instead found that communities were shaped by seasonal temperatures. In particular, moth communities were influenced most by summer temperature while winter temperature was the strongest driver of butterfly communities. Importantly, this shows that the CTR indicator can effectively indicate the biological impacts of climate change over time. Seasonal as well as annual temperatures must therefore be considered when predicting species’ vulnerability to climate change. It has been previously assumed that British butterflies will be fairly resilient to climate change because temperatures in Britain are colder than in much of their European range and populations tend to increase in response to warmer summer weather. However, as winter temperatures were found to be the main driver of butterfly community change, British butterflies may be more vulnerable to climate change than previously thought. 19.12.16 Papers View this paper online
A novel method for quantifying overdispersion in count data and its application to farmland birds Author: Mcmahon, B.J., Purvis, G., Sheridan, H., Siriwardena, G.M. & Parnell, A.C. Published: 2016 19.12.16 Papers