
TITL

BTO RESEARCH REPORT 720

Fine-scale mapping of relative abundance 
and trends, and extraction of small-area 
population trends for breeding birds
Jennifer A. Border & Simon Gillings



ACKNOWLEDGEMENTS: The BTO/JNCC/RSPB Breeding Bird Survey is a partnership 
jointly funded by the BTO, RSPB and JNCC, with fieldwork conducted by volunteers. This 
research was conducted under the development work programme of the BBS. We are 
grateful to BBS volunteers, without whose data these analyses would not be possible. 
We thank Philipp Boersch-Supan for statistical advice.



BTO Research Report 720

Fine-scale mapping of relative abundance and 
trends, and extraction of small-area population 
trends for breeding birds

Jennifer A. Border & Simon Gillings

ISBN 978-1-912642-08-3

© British Trust for Ornithology 2020

BTO, The Nunnery, Thetford, Norfolk IP24 2PU 
Tel: +44 (0)1842 750050 Email: info@bto.org
Registered Charity Number 216652 (England & 
Wales), SC039193 (Scotland).

BTO, The Nunnery, Thetford, Norfolk, IP24 2PU



BTO Research Report 7204

Executive summary	.......................................................................................................................................................................5

1.	 Introduction	.......................................................................................................................................................................6

2.	 Methods	 .......................................................................................................................................................................6

	 2.1.	 BBS count data......................................................................................................................................................7

	 2.2.	 Environmental variables......................................................................................................................................7

	 2.3.	 Evaluation of model fit......................................................................................................................................10

	 2.4.	 Producing estimated yearly abundance from the models........................................................................10

	 2.5	 Extracting trends and comparison with published trends.........................................................................10

3.	 Results	 ..................................................................................................................................................................... 11

	 3.1.	 Selecting the final model structure................................................................................................................. 11

	 3.2.	 Evaluating model fit...........................................................................................................................................12

	 3.3.	 Comparison with published trends................................................................................................................12

	 3.4	 Predicted abundance through time................................................................................................................18

4.	 Discussion	 .....................................................................................................................................................................18

	 4.1	 Usage of predictive models..............................................................................................................................21

	 4.2	 Limitations............................................................................................................................................................21

	 4.3	 Conclusions..........................................................................................................................................................23

5.	 References	 .....................................................................................................................................................................23

6.	 Appendix	 .....................................................................................................................................................................24



BTO Research Report 720 5

EXECUTIVE SUMMARY

1.	 The BTO/JNCC/RSPB Breeding Bird Survey (BBS) is the UK’s main scheme for monitoring population changes in the UK’s 
common terrestrial breeding birds. Trends are published annually for up to 111 bird species for the UK, England, Scotland, 
Wales, Northern Ireland and nine regions within England. 

2.	 These trends are useful at showing large-scale population changes but we know that some species show spatially varying 
trends that are masked by national trends, and cannot be captured by regional trends due to sample size constraints. Previous 
work has developed maps of abundance for different periods of the BBS time series but these are now out of date and lack the 
temporal resolution of standard population trends. 

3.	 Here, we update previous work, aiming to produce annual predictions of relative abundance, which can vary spatially 
and temporally, for the 111 species featured in the published BBS trends from 1994 to 2016. We evaluated two methods, 
Generalised Additive Models (GAMs) and Geographically Weighted Regression (GWR) to model spatial and temporal 
variation in species abundance relative to habitat and elevation. 

4.	 The GWR method took too long to run to be a feasible option for routine production of maps for over 100 species.

5.	 The GAM method worked well, yielding models with acceptable fit metrics and producing annual maps of relative abundance 
which agreed well with known distribution and abundance patterns from Bird Atlas 2007–11. 

6.	 From these maps we extracted trend estimates which were highly correlated with the published long-term and 10-year trends. 

7.	 These maps could be useful for setting local conservation priorities and may be better than the published BBS trends at 
estimating abundance for areas with poor coverage or rare and localised species. However, further work is needed to validate 
small area trends derived in this way against independent data.
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1. INTRODUCTION
The UK Breeding Bird Survey (BBS) (BTO/JNCC/
RSPB, Harris et al. 2017) is the UK’s main scheme for 
monitoring population changes in the UK’s common 
terrestrial breeding birds. It has been running since 
1994, and the trends in breeding birds are published 
annually (Harris et al. 2017). The survey relies upon 
volunteers surveying a stratified random sample of 1-km 
squares. In each square, two 1 km long transect lines 
(ideally 500 m apart) are walked at a slow constant pace 
and all birds seen or heard are recorded. Each square 
receives two visits per year, one in April to mid-May and 
a second in mid-May to the end of June. The maximum 
square count for each species out of the two visits is 
selected as the annual measure of relative abundance. 
To derive the published trends for each species from 
these data, a Generalised Linear Model (GLM) is used, 
with fixed effects of year and 1-km square and a weight 
to account for varying regional survey effort.

Trends are produced for the UK as a whole, for England, 
Scotland and Wales, and for nine regions within England 
(see Figure A1). However, current methods require 
a species to occur in an average of at least 30 1-km 
squares a year before a trend can be calculated, which 
prevents the calculating of trends for smaller areas. From 
the three bird atlases we know that spatial variation in 
change over years can be substantial (Sharrock 1976, 
Gibbons et al. 1993, Balmer et al. 2013), for example 
due to local differences in habitat or climate (Newson 
et al. 2009, Morrison et al. 2010). The Bird Atlases 
can measure this at a 10-km square resolution but are 
restricted to measuring change between two points 
in time 20 years apart; whereas in reality, populations 
may change rapidly in a much shorter time period. For 
example, British Greenfinch Chloris chloris populations 
declined by 35% in some high Trichomonosis incidence 
regions between 2006 and 2007 (Robinson et al. 2010). 
To ensure suitable local conservation measures are 
put in place in time to prevent substantial population 
declines, it would be useful to produce spatially explicit 
trends at a high temporal resolution. This would allow 
limited funds to be used more effectively and efficiently 
than policies based on national trends. Producing 
spatially explicit trends would also allow local trends to 
be extracted for specific areas. This would be useful, for 
example, to extract local trends for areas which have 
undergone substantial urbanisation since 1995 and 
thereby analyse the effect of this urban development on 
the species composition.

Spatially explicit trends have previously been generated 
from BBS data in Massimino et al. 2015 to investigate 
the spatial variation in farmland and woodland bird 
indicators. But this work was restricted to a sample of 
54 indicator species and the spatially explicit maps were 
produced for two separate time periods (1994—1996 
and 2007—2009) and used to extract trends. To date, 
no one has analysed all years of BBS data together to 
produce maps that vary both spatially and temporally 
on an annual basis.  

This project aims to update and build on the work 
of Massimino et al. 2015 by producing new maps 
which vary both spatially and temporally for the entire 
available time span of BBS data, for all species included 
in the published BBS trends (111). The next step will 
then be to assess the accuracy and predictive ability 
of these trends and determine if they are sufficiently 
robust to produce reliable trends for bespoke areas of 
interest, smaller than the current regions for which we 
can generate trends for. However, it is important to note 
here that it is difficult to reliably assess the accuracy of 
these spatially and temporarily varying trends as we do 
not have an independent trend dataset to assess them 
against and therefore will have to use the published 
BBS trends. There is no way of knowing how well the 
published BBS trends reflect the real-world situation; 
therefore, it is possible that mismatches between the 
two might be because the spatially and temporarily 
varying trends reflect the reality better than the 
published trends, rather than worse. 

Ideally these trends would be generated in such a way 
as to allow the generation of regular maps of trends 
and abundance which could be presented alongside the 
usual published trends. In the long term this process 
could be automated to run alongside the usual BBS 
trends each year. Therefore, as well as an accurate 
predictive model, we also needed a method that could 
be automated to run for all species and would run 
within an acceptable time frame comparable to the 
usual BBS trends.

2. METHODS
The key aims of this project can be summarised as 
follows:

1.	 Model the relationship between BBS count 
data and environmental variables to produce 
individual fine-scale predictions of abundance 
for 111 species, allowing predictions to vary in 
space and time;
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2.	 From these predictions produce spatially and 
temporally varying maps for each of the 111 
species;

3.	 Assess the accuracy and reliability of these maps 
against independent sources, such as Bird Atlas 
2007–11;

4.	 Summarise predictions across years to generate 
population trend estimates and compare these 
to those generated by the established BBS GLM 
method;

5.	 Make recommendations for how to implement 
annual spatial modelling of BBS data and future 
use of model-based trend estimates.

2.1 BBS COUNT DATA 
Because we wanted modelled predictions of species 
relative abundance to be comparable with the published 
BBS trends, we used the same dependent variable: 
maximum count for each species per 1-km square per 
year. There is other work ongoing to investigate the 
feasibility of generating the BBS trends from density 
estimates, thereby producing trend estimates that 
control for some aspects of detectability variation. 
This could be achieved by converting the counts per 
1-km square to densities using distance sampling 
techniques (Buckland et al. 2005; Newson et al. 2008), 
but implementing this on an annual basis is still in 
the development stage. Separate analyses are also 
investigating whether the production of BBS trends 
should account for variation in visit timing, variation in 
species phenology, and variation in the number of visits 
(Massimino in prep). But, again, this work is still at the 
development stage and these variables are currently not 
included in the published BBS trends. Therefore, we did 
not consider these variables here either, so as to ensure 
comparability between our results and the published 
BBS trends. A restricted list of 111 species (Table A1) 
was selected for modelling and mapping. These are 
species for which BBS trends were published in 2017 
(Harris et al. 2017) which in practice means these are 
species historically detected in at least 40 BBS squares 
per year in the UK or in 30 squares per year in one of 
the countries or English regions. By selecting these 
species we have reduced the likelihood of attempting 
models for species where the data would be too sparse 
to achieve a good fit.

 
 
 

2.2. ENVIRONMENTAL VARIABLES 
Possible environmental variables for inclusion in 
the models were limited as we wanted to apply the 
same model structure to all 111 species allowing the 
possibility of automating the modelling process in 
future. Additionally, we wanted to limit the number of 
variables as much as possible to ensure there would 
be sufficient data per variable to avoid over-fitting 
(ideally at least 10 data points per variable: Harrell et al. 
1996) for all 111 target species, including those which 
were rare and localised. Therefore, we were guided by 
the results of Massimino et al. (2015) and decided to 
include elevation and broad habitat variables from the 
Centre for Ecology and Hydrology (CEH) Land Cover 
Map (LCM) (Table 1). These LCM data are available 
for a range of periods (1990, 2002, 2007, 2015), but 
unfortunately data from the different periods are not 
comparable due to differences in the way the satellite 
images are analysed. We chose to use the LCM2007 
(Morton et al. 2011) as a point mid-way through our 
time series (1994–2016) which minimises the time 
frame for habitat change during the study period.   

The UK is made up of many different islands as well as 
mainland Britain and Northern Ireland, and we know 
from bird atlas data that some species’ distributions 
and abundances vary between the mainland and 
islands, or within island groups (Balmer et al. 2013). It 
is also likely that population trends may vary as species 
colonise island groups, or if key mammalian predators 
colonise or are introduced to islands. Therefore, we 
included a categorical ‘island’ term in the models. We 
trialled two versions of this term, one with just two 
categories: ‘island’ and ‘mainland’, and one with seven 
categories distinguishing the main island groups (i.e. 
Shetland, Orkney etc.) from Northern Ireland and 
mainland Britain (Table 1). We would expect the models 
with the seven-level categorical variable for ‘island’ to 
be better at explaining patterns in bird abundance as 
variation in species composition between islands would 
be accounted for, but there is a risk that this model 
might over-fit the data and prevent generalisations 
being made. We ran the analyses twice, once with each 
version of the ‘island’ term. 

We also included ‘year’ so as to model temporal 
variation, and easting and northing, both to model 
spatial variation and to account for spatial auto-
correlation and spatial variation in survey effort (Wood 
2017). The way these variables are included differs 
depending on the modelling method.
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Table 1. The environmental variables included in the spatial models of bird abundance. 

Variable Description Source

% cover semi-natural grassland Includes rough grassland, neutral 
grassland, calcareous grassland, acid 
grassland and fen, marsh and swamp 
habitats.

Land Cover Map (LCM2007) from the 
Centre for Ecology and Hydrology (CEH) 
(Morton et al. 2011).

% cover mountain, heath and bog Heather, heather grassland, bog, montane 
habitats and inland rock.

LCM2007 from CEH (Morton et al. 2011).

% cover coastal Includes supra-littoral rock, supra-littoral 
sediment, littoral rock, littoral sediment, 
saltmarsh.

LCM2007 from CEH (Morton et al. 2011).

% cover freshwater Includes freshwater bodies. LCM2007 from CEH (Morton et al. 2011).

% cover improved grassland Includes improved grassland. LCM2007 from CEH (Morton et al. 2011).

% cover arable Includes arable and horticultural. LCM2007 from CEH (Morton et al. 2011).

% cover urban Includes urban and sub-urban. LCM2007 from CEH (Morton et al. 2011).

Ratio of coniferous to deciduous woodland Log10((% coniferous woodland +0.01)/ 
(%broadleaved woodland +0.01)); the 
0.01 was added to all counts to avoid 
obtaining infinite values when the 
percentage cover equalled zero.

LCM2007 from CEH (Morton et al. 2011).

% cover trees Raster of 20 m resolution giving the 
percentage tree cover per pixel. The data 
were re-projected from the European 
ETRS89 grid to the British National 
Grid and percent cover estimates were 
derived for each 1-km square. This 
dataset includes scattered trees and 
some hedgerows and treelines and was 
therefore preferred over the 2015LCM 
which only includes significant blocks of 
trees.

Copernicus Pan-European High Resolu-
tion Layer Tree Cover Density 2012 raster 
dataset (HRL; land.copernicus.eu/pan-eu-
ropean/high-resolution-layers).

island or mainland A categorical term, two versions were 
trialled: a two-level categorical term of 
‘island’ or ‘mainland’, and a seven-level 
categorical term distinguishing groups 
of islands (Northern Ireland, Orkney, 
Shetland, Isle of Wight, Lewis/Harris, Uists 
and Britain).

Manually derived from maps.

elevation Mean elevation per 1-km square in 
meters above sea level .

GGIAR-SRTM 90 m raster (Jarvis et al. 
2008).

year 1994 to 2016 as a numeric term. BBS data (Harris et al. 2017).

easting and northing The centroid of each 1-km survey square. BBS data (Harris et al. 2017).
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Spatial model structure 
We tried two alternative methods of modelling 
spatial and temporal variation in species relative 
abundance, a Generalised Additive Model (GAM) and a 
Geographically Weighted Regression (GWR). 

Generalised Additive Model 
Massimino et al. 2015 used a GAM modelling approach. 
A GAM is a non-parametric extension of a general linear 
model, which can deal with non-linear relationships by 
using smooth terms (Guisan et al. 2002). The smooth 
terms in a GAM are additive which allows us to interpret 
it in a similar way to a traditional linear model. In the R 
package mgcv (Wood 2017) smooths are implemented 
using penalised regression splines. A GAM allows 
modelling of spatial and temporal variation through 
these smooth terms. Given what we understand about 
how bird abundance varies, and the types of trends we 
would like to estimate, we aimed to produce a model 
that included an ‘easting–northing’ smooth (allowing 
bird abundance to vary spatially), a smoothed ‘year’ 
term (allowing bird abundance to vary annually) and an 
interaction between the ‘easting–northing’ smooth and 
the ‘year’ smooth (allowing the relationship between 
bird abundance and year to vary spatially). Thin-plate 
regression splines were used to model easting and 
northing together in a 2D isotropic spatial smooth. 
An isotropic smooth was used as opposed to a tensor 
product smooth as easting and northing are on the 
same scale, i.e. a 1 unit change in easting is equivalent 
to a 1 unit change in northing as both are measured in 
metres. We tried various ways of modelling year, as a 
continuous linear term, as a categorical term and as a 
continuous variable with a thin plate regression spline. 
An interaction was fitted between the 2D spatial smooth 
and the ‘year’ term. For the models where the ‘year’ 
term was a smooth, this made a 3D smooth. As models 
used count data, we assumed Poisson distributed errors 
and a log link.  

Geographically Weighted Regression 
A GWR incorporates spatial variability in a different 
way to a GAM. Effectively, GWR uses a spatial search 
window and fits a separate regression model to all the 
points in the search window each time (Fotheringham 
et al. 2003). Before the model is fitted, calibration 
is performed to find the appropriate width of this 
window, called the ‘optimal bandwidth’. The bandwidth 
is defined either by actual geographical distance, ‘a 
fixed kernel’ or by the number of nearest neighbours 
to include, ‘an adaptive kernel’.  In this way a GWR 
model would produce a range of parameter estimates 
for each variable in the model. For example, for the 

coefficient year, GWR would produce a range of 
parameter estimates for the relationship between year 
and bird count (essentially generating a local population 
trend estimate). However, a GWR would also allow the 
relationship between bird count and habitat to vary 
spatially too, if, for example, it was likely that Willow 
Warbler responded differently to woodland in Scotland 
and south-east England. This is also possible to do in a 
GAM using an interaction term between each habitat 
variable and the easting and northing smooth but this 
has several drawbacks: i) it would result in an incredibly 
complex and potentially over-fitted GAM; ii) the GAM 
would likely take a very long time to run, iii) at least 
some of the species would likely have convergence 
issues, preventing the model from being implemented 
in automated manner. Here, we tried generating a 
GWR model (using the spgwr package in R, Bivand & 
Danlin 2017) both including the habitat, island and 
topographical terms along with year, and just including 
the year coefficient. An adaptive kernel was used to 
account for variation in survey effort.

General model structure applied to both methods
Analyses treated 1-km squares as independent data 
points. A slight modification was required in the uplands 
where certain squares are paired with an adjacent 
square to increase bird detections for these hard to 
reach locations. The total species counts from both 
squares were combined and included as a single data 
point for analysis purposes. To account for the extra 
survey effort in these upland paired squares, all models 
included an offset, with this being set to log(1) for the 
majority of squares and to log(2) for paired squares. 
This essentially converts all counts to count per 1-km 
square.  

Initially, a weight to account for variation in survey 
effort between regions was included in the GAMs (this 
is not possible for GWRs), but it became apparent 
that this was absorbing local spatial variation that we 
wanted to include in the model; therefore the weight 
was removed. As the spatial smooth will account 
for variation in survey effort in these models it is 
unnecessary to have both a spatial smooth and a 
weight to account for survey effort. 

Elevation was positively skewed and therefore was 
normalised by subtracting the minimum value and 
dividing by the range before inclusion in the models. 
For the GAMs we also tried fitting a smooth term for 
‘elevation’. This was because ‘elevation’ will vary over 
a larger spatial scale than the habitat variables and will 
likely represent variation in various other environmental 
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parameters, such as climate and even habitat to an 
extent, so we wanted to allow more flexibility in this 
relationship. The smoothing parameter, k, was set to 
three so as to only allow linear or quadratic relationships 
which were considered biologically plausible. Some of 
the habitat variables, such as woodland cover, may also 
have a non-linear relationship with bird abundance for 
some species, but we did not fit smooths for all these 
terms to so as to avoid over-fitting and impractical 
model run times. For the GWR, as different regression 
models are fitted through space, the relationship 
between bird abundance and elevation or habitat is 
already very flexible. 

2.3 EVALUATION OF MODEL FIT 
We tested the predictive power of the final model fitted 
for each species using two methods: agreement with 
distribution data from the Bird Atlas 2007–11 (Balmer 
et al. 2013) and cross-validation. For the former, 
occupancy at the 10-km square level from the Bird 
Atlas 2007–11 was used as a coarse verification of the 
model predictions. Predictions for all 1-km squares in 
Britain were made with year set to 2010, then split into 
two groups: those where the parent 10-km square was 
occupied based on atlas data (squares with possible, 
probable or confirmed breeding evidence) and those 
where the 10-km square was unoccupied.  A t-test was 
used to compare these two groups; if the predictions 
are valid we would expect the predictions for occupied 
squares to be significantly higher than the predictions 
for unoccupied squares. 

Secondly, we conducted 10-fold cross validation. The 
final model was fitted using data from a randomly 
selected 90% sample of 1-km squares (‘training data’). 
This model was then used to predict abundance based 
on the variable values from the remaining 10% of the 
1-km squares (‘test data’). This split was done at the 
square level to ensure independence between test 
and training data and between folds. The predicted 
abundances were then compared to the observed 
abundances from the test data using Spearman’s rank 
correlation coefficient. This process was repeated 10 
times using a different 10% of the data for testing 
each time and the mean correlation coefficient (and 
95% confidence intervals) across the 10 replicates was 
calculated. 

2.4 PRODUCING ESTIMATED YEARLY 
ABUNDANCE FROM THE MODELS 
The final model for each species was then used to 
create 1-km square level predictions of the estimated 
relative abundance of each species each year using 

the ‘model predict’ function and setting ‘year’ to 
the appropriate year. A recognised limitation is that 
we use static habitat data when making predictions 
as comparable land cover metrics are not available 
throughout the time series. Predictions then underwent 
a filtering process which aimed to remove values for 
which the predictions were likely to be inaccurate:

•	 Predictions for Shetland were removed due 
to low reliability as there are no BBS squares 
in Shetland to inform the predictions. Also, 
Shetland is on the edge of the spatial smooth 
so predictions here are sensitive to edge effects 
(Wood 2017). 

•	 It was apparent that the models could not 
predict well for large lakes. Squares which are 
100% water are not covered by the BBS which 
is a purely land-based survey, so we removed 
the predictions for 1-km squares which were 
100% freshwater based on the 2007LCM. 

•	 Poisson models cannot predict exact zeros 
on the response scale which makes it difficult 
to distinguish extremely low counts from 
absences. Therefore, for each species we also 
filtered the predictions using the Bird Atlas 
2007–11 (Balmer et al. 2013). The Bird Atlas 
data provided 10-km resolution presence-
absence data for the whole of Britain and 
Ireland. We used this to find all unoccupied 
10-km squares (where there was no evidence 
of breeding) For all 1-km squares falling in 
these unoccupied 10-km squares we calculated 
the median predicted abundance. Finally, any 
predictions in the UK equal to or lower than this 
value were set to zero. 

These yearly relative abundance estimates were next 
mapped both in individual year maps for each species 
and in animated maps showing changes over the years 
in a GIF format, using the gganimate package in R 
(version 0.1.0.9000 Robinson 2016).

2.5 EXTRACTING TRENDS AND COMPARISON 
WITH PUBLISHED TRENDS  
This project aimed to assess the feasibility of producing 
reliable local and regional trends, either to allow trends 
to be produced for bespoke areas, or to provide trends 
for species in countries or regions where this is currently 
impossible using the standard square × year model. 
Therefore, we assessed how well estimated trends 
from our final models matched the published trends 
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for countries and regions. Though as alluded to earlier, 
we cannot know which of these modelling methods 
produces trends that match reality best. To compare our 
model results to the published BBS results we predicted 
abundances for the years used in the published trends: 
1995, 2006, 2015 and 2016. Next we summed all 
the 1-km predictions for each region for each of the 
aforementioned years. The 1995 to 2016, 2006 to 2016 
and 2015 to 2016 trends were calculated by log10((latest 
year +0.0001)/(earliest year +0.0001)). The log ratio 
of change was also calculated for the published trend 
estimates by back calculation log10((trend/100)+1).  
A scatter plot was generated for each region with our 
modelled trend for each species plotted against the 
published BBS trend and a correlation coefficient was 
calculated. Additionally, we also generated a trend just 
for the county of Cambridgeshire from our models and 
compared this to a trend generated for the same region 
using the standard BBS GLMs of count ~ 1-km square 
+ year. 

The previous part of the analysis checks whether there is 
overall agreement across species between the different 
methods of calculating trends, but it can conceal large 
differences in trend estimates for individual species. 
To consider this we tested whether the trend estimates 
derived above would have resulted in the same 
magnitude of change as that based on the standard 
method. We assigned each species to Green, Amber or 
Red status based on its 20-year trend between 1995 and 
2015: Red list species were those which had declined 
by 40% or more during this period, Amber list species, 
those which had declined by between 20–40% and 
Green list species were those which had declined by 
less than 20%, remained stable or had increased. The 
assignation to Red, Amber or Green was done both for 
our modelled estimates and the published GLM trends 
and the results compared.

3. RESULTS
3.1 SELECTING THE FINAL MODEL STRUCTURE 
Unfortunately, it was not possible to fit a GWR model. 
When all variables were included, the bandwidth fitting 
stage of the model for one species was still running 
after six days (on a 64 bit i3 processor with 16 GB of 
RAM) and showing no signs of finishing in the near 
future. Without significant parallel computing resources 
it would take over two years just to fit the bandwidth 
part of the model for each species. Even fitting the 
bandwidth for a model with just year changing in space, 
and so not including any of the other environmental 

variables, the process still had not finished running after 
six days. Therefore, a GAM structure was used for all 
subsequent analyses. In these models. the smoothed 
‘year’ term worked best compared to a categorical 
‘year’ term and a linear ‘year’ term. The linear term was 
unable to represent non-linear relationships with time. A 
categorical term was too complex to allow the model to 
converge, having up to 23 levels. 

The results for the GAMs with the seven-level categorical 
term for island and with the two-level categorical island 
term were very similar (Figure 1). However, the seven-
level island term models performed marginally better 
on average both in terms of cross validation (mean 
correlation coefficients of 0.359 ± 0.015, as opposed to 
0.358 ± 0.015) and in terms of run time (a total of 91 
hours 38 minutes for all 111 models as opposed to 120 
hours 33 minutes) (Table A1). The difference in run-
time appeared to be mainly due to Woodpigeon which 
took 10 hours with a two-level ‘island’ term and only 45 
minutes with a seven-level ‘island’ term. However, as 
evident from Table A1 and Figure 1a, the quickest model 
varied depending on the species selected and surprisingly 
there was no relationship between run-time and the 
number of counts greater than zero in the input dataset. 
When comparing the plots of the GAM trend versus 
published GLM trend, the two versions (two-level versus 
seven-level island term) were visually identical, with the 
exception of Ring-necked Parakeet trends for the UK as 
a whole. But Ring-necked Parakeet was one of the few 
species for which it was not possible to create sensible 
models anyway (see limitations for more discussion of 
this). The animated maps were also visually identical for 
the two-level and seven-level ‘island’ term. Therefore, 
here we will only present the results from the models 
with the 7-level categorical ‘island’ term. 

The final model included:

•	 linear effects for the habitat variables listed in 
Table 1;

•	 a seven-level categorical term for ‘island’;

•	 a smoothed term of ‘elevation’ where the 
smooth was restricted to a maximum k of 3;

•	 an isotropic 2D ‘easting-northing’ smooth;

•	 a ‘year’ smooth;

•	 an interaction between ‘year’ and the ‘easting-
northing’ smooth. 
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The spatial and temporal smooths (easting, northing 
and year) in the models did not show over-fitting and 
therefore we did not specify k. k was selected internally 
within the program based on the data using Generalized 
Cross Validation; in this way the level of smoothing was 
allowed to vary between species as needed. 

3.2 EVALUATING MODEL FIT 
The GAMs performed moderately well according 
to both evaluation methods. The cross-validation 
correlation coefficients of observed versus predicted 
values ranged from 0.10 (for Little Grebe) to 0.67 
(for Yellowhammer) (Table A1), but the majority of 
predictions were between 0.26 and 0.36. The cross-
validation rs value increased as the number of counts 
for the species (excluding zeros) increased, but followed 
a diminishing returns curve, with additional counts after 
1,000 leading to little increase in model accuracy  
(Figure 1a). 

For all 111 species, the model predictions were 
significantly higher for occupied 10-km squares (from 
Bird Atlas 2007–11) compared to unoccupied 10-km 
squares (P < 0.001 for all 111 t-tests). 

3.3 COMPARISON WITH PUBLISHED TRENDS 
Table 2 displays the Spearman’s rank correlation 
coefficients and the estimated slope of the regression 
line between the estimates from the GAMs and the 
GLM published trend estimates (slopes closer to 1 
show higher agreement between the two modelling 
methods) and Figure 2 displays the corresponding 
correlation plots. It should be noted that these regional 
trends include species for which there are fewer than 
30 records within a region, and therefore species for 
which the regional published GLM trends is considered 
unreliable. Goodness of GAM fit was not related to 
correlation to the published GLM trend: there was no 
relationship between the GAM cross-validation rs value 
and the discrepancy between the GAM predicted trend 
and the published BBS trend (correlation < + 0.02).

For the long-term (1995 to 2016) and 10-year (2006 
to 2016) trends, there is generally a strong correlation 
(although variable calibration) between the published 
trends and those from the GAMs (95–16 mean rs = 
0.869 ± 0.05 (SE), mean β = 0.64 ± 0.1 , 06–16 mean rs 
= 0.81 ± 0.02  , mean β = 1.06 ± 0.2; Table 2, Figure 2). 
But the one-year trends (2015 to 2016) extracted from 
the maps were poorly correlated and poorly calibrated 
with published trends (15–16 mean rs = 0.22 ± 0.03 
(SE), mean β = 0.25 ± 0.2; Table 2, Figure 2). 

The GAM method performed poorest for the UK trend, 
with the regression slope suggesting that the long-term 
trend was underestimated (95–16 β = 0.04; Table 2) 
and the 10-year trend over-estimated (06–16 β = 3.60; 
Table 2). This was due to the outlier value for Ring-
necked Parakeet, without Ring-necked Parakeet 95–16 
β = 1.07 and 06–16 β = 1.08. This species had to be 
removed from the plots as trend estimates were so far 
outside the range of other species, making it difficult to 
see the general relationship (Ring-necked parakeet GAM 
estimated 95–16 trend = -8.46 compared to published 
GLM estimate = 1.20). This is due to the extreme 
predictions from the GAM for Ring-necked Parakeet, 
with total annual UK estimated relative abundance 
ranging from 1.66 x 104 to 1.20 x 1042, suggesting 
that despite the reasonable cross-validation value of 
0.33, the GAM for this species is unreliable. Yorkshire 
and Humberside and Wales showed slightly weaker 
correlations between the published GLM trends and 
the trends estimated from the GAMs, as did the 1995 to 

Figure 1. Plot of a) the time taken to fit 
each species’ GAM and b) Spearman’s rank 
correlation coefficient 10-fold cross validation 
results, versus the average number of counts 
above zero for that species per year (between 
1994 to 2016). Results are shown for the GAM 
with a two-level island term (represented by 
a grey cross and the GAM with a seven-level 
island term (represented with a black dash). 
The grey dashed line represents 30 counts, the 
cut-off point used to determine whether or not 
to publish a BBS trend for a species.

a

b
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2016 β estimate for the South East region, whereas the 
West Midlands showed one of the strongest agreements 
between the published trends and the GAM estimated 
trends (Table 2; Figure 2). The county trend for 

Cambridgeshire shows a weaker relationship between 
the GLM BBS trend and our spatially and temporarily 
varying trends (Figure 3; rs=0.69 and β =0.23) than for 
the regional long-term trends, but is still generally better 
than the one-year regional trends. 

Table 2. Comparison of the species specific 20-year (1995 to 2016), 10-year (2006 to 2016) and 1-year (2015 to 
2016) published BBS GLM trends with the trends estimated from predictions from the spatiotemporal GAMs. 
The correlations coefficient between the two (rs) is measured by Spearman’s Rank Correlation Coefficient, and 
the slope (β) from a linear regression of GAM estimated trend as a function of BBS GLM published trend. 

1995 to 2016 2006 to 2016 2015 to 2016

Region rs β rs β rs β

UK 0.906 0.042 0.906 3.602 0.445 2.577

Scotland 0.872 0.958 0.770 0.866 0.180 0.064

Wales 0.842 0.170 0.621 0.791 0.199 0.044

Northern Ireland 0.850 0.813 0.796 0.876 0.108 0.066

North West 0.877 0.917 0.801 0.773 0.232 0.052

East England 0.923 0.844 0.834 1.113 0.196 0.108

North East 0.929 0.158 0.855 0.861 0.235 0.041

Yorkshire & Humberside 0.797 0.291 0.747 0.752 0.110 0.052

East Midlands 0.816 1.008 0.800 0.800 0.262 0.063

West Midlands 0.964 0.885 0.927 0.755 0.214 0.032

South East 0.902 0.542 0.901 0.990 0.258 0.008

South West 0.804 1.108 0.721 0.914 0.070 0.038

London 0.818 0.627 0.904 0.660 0.279 0.058
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Figure 2. Plots of species-specific published BBS GLM trend data versus the species-specific trend estimated 
from predictions from the spatiotemporal GAM. The darkness of the blue dots indicates the cross-validation 
value (Table A1), darker = higher model predictive ability. One species, Ring-necked Parakeet, had to be 
removed from the UK trend graph for the 10-year and 1-year plots as it fell well outside the range of the 
other predictions and therefore made the graph very difficult to read. In each plot the red line shows the 1:1 
relationship expected if both trends agreed.

United Kingdom
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Wales
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Figure 2. (continued) Plots of species-specific published BBS GLM trend data versus the species-specific trend 
estimated from predictions from the spatiotemporal GAM. The darkness of the blue dots indicates the cross-
validation value (Table A1), darker = higher model predictive ability. One species, Ring-necked Parakeet, had 
to be removed from the UK trend graph for the 10-year and 1-year plots as it fell well outside the range of the 
other predictions and therefore made the graph very difficult to read. In each plot the red line shows the 1:1 
relationship expected if both trends agreed.
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Figure 2. (continued) Plots of species-specific published BBS GLM trend data versus the species-specific trend 
estimated from predictions from the spatiotemporal GAM. The darkness of the blue dots indicates the cross-
validation value (Table A1), darker = higher model predictive ability. One species, Ring-necked Parakeet, had 
to be removed from the UK trend graph for the 10-year and 1-year plots as it fell well outside the range of the 
other predictions and therefore made the graph very difficult to read. In each plot the red line shows the 1:1 
relationship expected if both trends agreed.

Yorkshire & The Humber
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Figure 2. (continued) Plots of species-specific published BBS GLM trend data versus the species-specific trend 
estimated from predictions from the spatiotemporal GAM. The darkness of the blue dots indicates the cross-
validation value (Table A1), darker = higher model predictive ability. One species, Ring-necked Parakeet, had 
to be removed from the UK trend graph for the 10-year and 1-year plots as it fell well outside the range of the 
other predictions and therefore made the graph very difficult to read. In each plot the red line shows the 1:1 
relationship expected if both trends agreed.
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South West

South East
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Figure 2. (continued) Plots of species-specific published BBS GLM trend data versus the species-specific trend 
estimated from predictions from the spatiotemporal GAM. The darkness of the blue dots indicates the cross-
validation value (Table A1), darker = higher model predictive ability. One species, Ring-necked Parakeet, had 
to be removed from the UK trend graph for the 10-year and 1-year plots as it fell well outside the range of the 
other predictions and therefore made the graph very difficult to read. In each plot the red line shows the 1:1 
relationship expected if both trends agreed.

London

The majority of species (97 out of 111) had the same 
status (Red, Amber or Green) from the published BBS 
GLM trends and the GAM-based estimates. Nine of 
the 14 exceptions (Table 3) were species for which the 
GAM trend yielded a higher threat status than calculated 
based on the published GLM. For seven (Corn Bunting, 
Feral Pigeon, Lapwing, Marsh Tit, Spotted Flycatcher, 
Sparrowhawk and Yellowhammer) the difference 
between the published GLM and estimated GAM trends 

was relatively small, <10% and just coincided with the 
category boundary. For the other seven species the 
difference between the published GLM and estimated 
GAM trends were more substantial (Table 3). On 
average the GAMs had a lower accuracy (as measured 
by 10-fold cross validation Table A1) for the seven 
species for which the different between the published 
GLM and estimated GAM trend was larger (rs range = 
0.110–0.327 and mean = 0.187) compared to the seven 
species for which the difference was smaller (rs range = 
0.115–0.671 and mean = 0.343). 

3.4 PREDICTED ABUNDANCE THROUGH TIME 
The models were used to make annual maps of predict 
relative abundance over the whole of the UK which were 
compiled into animated GIF files for each species. Figure 
4 shows an example of the annual maps for Buzzard 
illustrating how Buzzard abundance first increased in 
the west of Britain then spread across to populate the 
east of Britain.   

4. DISCUSSION 
In this project we have produced reliable predictions 
of relative abundance for many breeding bird species 
using GAMs with habitat variables and spatial and 
temporal smooths. This opens up options for extract-
ing localised trends for some species and for visual-
ising changes in species’ abundance and distribution 
through time. 

Table 3. Species for which the status 
assessment (Red, Amber or Green) derived 
from the GAM estimated trend differed from 
the published GLM trend derived status 
assessment. 
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Table 3. Species for which the status assessment (Red, Amber or Green) derived from the GAM estimated 
trend differed from the published GLM trend derived status assessment.  

Species
GLM estimated 

1995–2015 trend
GLM assigned 

category
GAM estimated 

1995–2015 trend
GAM assigned 

category

Ring-necked Parakeet 1455.0 Green -100.0 Red

Common Crossbill -1.7 Green -41.0 Red

Grasshopper Warbler -16.7 Green -40.6 Red

Great Crested Grebe 9.9 Green -28.2 Amber

Sedge Warbler -9.5 Green -25.0 Amber

Peregrine -12.6 Green -24.2 Amber

Spotted Flycatcher -37.7 Amber -46.6 Red

Corn Bunting -33.5 Amber -41.2 Red

Sparrowhawk -16.0 Green -23.3 Amber

Yellowhammer -15.7 Green -20.9 Amber

Marsh Tit -41.2 Red -38.0 Amber

Lapwing -42.9 Red -35.6 Amber

Feral Pigeon -21.1 Amber -10.8 Green

Great Black-backed Gull -36.9 Amber -9.2 Green

Figure 4. Maps of the modelled Buzzard relative abundance each year between 1994 and 2016 from the GAM. 
The colour categories are in deciles.
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Figure 4. (continued) Maps of the modelled Buzzard relative abundance each year between 1994 and 2016 
from the GAM. The colour categories are in deciles.
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4.1 USAGE OF PREDICTIVE MODELS

The animated maps are an engaging, intuitive and quick 
way to show how species abundances have changed 
over time. They could help us to engage with a much 
larger audience than our current published BBS tables 
would, especially in this current age of social media 
where high volumes of information mean pictures are 
vital for catching initial interest. For example, tweets with 
an image lead to a 35% increase in re-tweets (https://
blog.twitter.com/official/en_us/a/2014/what-fuels-a-
tweets-engagement.html). The maps are also much 
more accessible to a non-science audience than tables 
of trend figures would be (Siricharoen 2013). 

The maps are especially good at showing large-scale 
changes in distribution or abundance, for example the 
Buzzard recolonization of eastern England, the spread 
of Nuthatch northwards and the decline of Curlew 
and more recently Greenfinch. These examples are 
patterns we already know about from the BBS trends, 
Bird Atlases and other bird survey work. But the maps 
may also be useful to pick up trends that would not 
be uncovered in these other outputs, such as localised 
declines which affect too small an area to be picked 
up in the national and regional BBS trends, or are too 
recent to be uncovered in the 20-year change maps 
from Bird Atlas 2007–11. An argument can also be 
made that these GAMs may produce more reliable 
trend estimates than the site × year GLMs for areas 
with low coverage (e.g. remote upland areas) where 
non-random coverage and low sample size may have 
synergistic negative effects as biased data are up-
weighted in sparsely surveyed survey strata. The lower 
correlation between the GAM and GLM county trends 
for Cambridgeshire compared to the regional trends, 
may actual represent a better predictive ability for the 
GAM method in a smaller region. Though, without 
an independent trend data source we cannot test this 
theory. The inclusion of habitat variables and elevation 
in the GAMs means it is possible to infer abundances 
for areas with sparse data and the spatial smooths will 
also assist this process by interpolating local patterns 
of abundance based on squares with data. An example 
where this may be effective is for habitat-specific 
population declines, such as the recent declines in 
upland birds (Balmer et al. 2013) or woodland birds 
(Defra 2018). In the same way, this mapping method 
may also allow us to map trends in species which 
have too small a sample size to allow a published BBS 
trend, but probably only for species with very localised 
ranges, where the spatial smooths will strongly inform 
the distribution. It may be possible for conservation 
mangers and local policymakers to use the maps to 

uncover localised declines in species and thereby set 
appropriate conservation priorities, though as we do 
not have temporally varying habitat data this would be 
determined by the resolution of the smooth terms. 

However, it is important to remember that we do not 
and cannot know what the actual abundances and 
trends in species are at a countrywide scale. Both the 
published BBS trends and the GAMs are predictions 
based on survey data. Ideally, small areas should be 
ground truthed with exhaustive surveys and these data 
compared to the two sets of estimates. However, in 
practise it is likely to prove difficult to do this over a long 
enough period of time, even for a small area. Validation 
of the patterns shown here with other independent 
survey datatsets, such as local county-based atlases, 
single species surveys, the Breeding Waders of English 
Upland Farmland survey (https://www.bto.org/
volunteer-surveys/breeding-waders-english-upland-
farmland), or BTO Garden BirdWatch (https://www.
bto.org/volunteer-surveys/gbw) would help to improve 
confidence in the GAM predictions. 

It would be possible to run these models routinely, 
though it would be wise to filter the BBS data first to 
remove uninformative models. This could involve 
screening for extreme outlier values, and removing 
species with low sample sizes. A threshold of at least 30 
occupied squares per year on average is already applied 
to determine whether BBS trends are published using 
the site × year GLM method. It would not be necessary 
to run these GAMs every year, running them every five 
years would probably be sufficient to identify newly 
developing local trends and for public engagement 
purposes.

4.2 LIMITATIONS 
The models in general yielded reasonably good 
correlations between observed and predicted values 
from cross-validation for count data, where the 
inherent stochasticity in the counts prevents really high 
correlation values (the highest correlation values from 
previous projects were around 0.68, Johnson et al. 2013, 
Newson et al. 2015, Border et al. 2017, Border et al. 
2019). Long-term and mid-term trends estimated from 
the maps showed high correlation to the equivalent 
published BBS trends at national and regional scales. 
This gives us confidence in the reliability and usability 
of these predictive GAMs. However, the predicted 1-year 
trends did not match the published data well. This is 
likely to be due to the temporal smooth which, as its 
name suggests, smooths over differences from year to 
year. This means these models will be unable to reflect 
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sudden population crashes such as those observed 
for Long-tailed Tit (>27% reduction) and Wren (17% 
reduction) from 2017 to 2018 due to the severe winter 
event in February 2018 (the so-called ‘Beast from 
the East’ Harris et al. 2019). The spatial and temporal 
smooth may also affect predictions in coastal areas 
due to edge effects (Wood 2017). Therefore, we would 
not recommend relying purely on these predictions for 
coastal regions. 

The few species where the GLM published and GAM 
estimated trends did not match for long-term and 
mid-term trends were species with small sample sizes 
and also often species which had undergone recent 
colonisation and expansion, such as Ring-necked 
Parakeet and Red Kite in eastern areas. But in these 
cases, both the published GLM BBS trends and the 
trends estimated from the GAM did not produce reliable 
population trends, giving large confidence intervals 
and some extreme and unrealistic predictions. This was 
especially true for Ring-necked Parakeet, with the BBS 
published long-term trend equalling +1480 (CI: 568–1 
746), and 1-km predicted values varying between zero 
and 1.11 x 1042. This suggests that with the currently 
available data we are unlikely to be able to achieve a 
good model for this species. There was also an issue 
with modelling the distribution of flocking water birds, 
such as geese. This was partly rectified by removing 
squares which were 100% freshwater, but, there was 
still a minority of extremely high counts in the raw 
data from flocks which led to some extreme predicted 
values. These issues with extreme counts highlight the 
more general problem of how to determine which 
species cannot be effectively modelled. Possibly we 
could impose a rule of thumb to remove species 
where predictions exceed an unrealistic magnitude, for 
example removing species with predicted values 10 
times that of observed values. This rule would need to 
be tested and refined to ensure it worked suitably in 
practise with all species.

In terms of correctly assigning the threat status of a 
species, the GAMs did this correctly for the majority of 
species. For nine species the predicted conservation 
status threat level from the GAM was worse than the 
predicted threat level from the published GLM, this 
may mean extra resources are spent in more detailed 
assessments of these species’ trends. More worrying 
though is the four species where the status threat level 
from the GAMs was better than their conservation status 
based on the published GLM trends. If the GAM models 
were relied upon in the absence of the GLM published 
trend this could delay the identification of the species’ 

true threat status and thereby delay conservation 
action. However, this is only true if the published GLM 
trend is more accurate than the GAM estimated trend, 
and we cannot measure this without the presence of 
independent survey data.

The models only use one set of habitat data for all 
years, assuming that habitat has not changed. This is 
unlikely to be the case over a 22-year time span, and 
if the same methods are employed in the yearly trend 
generation then as the time frame increases, it is likely 
the habitat data will become less relevant. With the 
current model design, only one set of habitat data can 
be used per 1-km square. However, it would be possible 
to update the habitat data for later period trends, the 
problem of habitat inaccuracies will only persist if the 
model is used to calculate predictions over a long 
period. CEH are currently deriving a 1990LCM which 
will be comparable with the more recent 2015LCM. With 
comparable datasets through time it would be possible 
to use the most relevant habitat data for each year. It 
also would be possible to produce separate models with 
different LCM datasets and then use these to produce 
weighted ensemble predictions for each year. In these 
the predictions from the model using the LCM product 
nearest in time to the year of interest would get the 
highest weighting and the models using the other LCM 
datasets would get progressively lower weightings to 
reflect the lower relevance of the habitat data. Added 
complexities such as this would further increase the 
computation burden.

At present there are no measures of uncertainty 
associated with the maps or with the trends estimated 
from them. It would be possible to run bootstraps 
on the model for each species to obtain confidence 
intervals around predictions but it would take a long 
time to run. Fitting a single model currently takes 
between 12 minutes and 11.5 hours, depending on the 
species. To do this 100 times for bootstraps would take 
from 20 hours to 47 days depending on the species. In 
total, the run-time for all species would be increased to 
c10,000 hours, and would likely increase further with 
each new year of data. Although we have access to 
parallel computing solutions which could reduce the 
duration over which the work is done, this is still a very 
significant total computational requirement and the 
associated carbon costs of running this many models 
should be considered.

We built the models using observed BBS counts and 
unlike Massimino et al. (2015) we did not attempt to 
adjust for imperfect detection using distance sampling. 
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This means the abundance patterns generated cannot 
be compared in absolute terms across species due 
to detectability differences. Future iterations of these 
models should be based on detectability corrected data 
so that models output predicted densities. This will 
make maps comparable across species, will allow maps 
to be summarised across species to assess community 
metrics, or to be summarised spatially, for example 
summated to produce population estimates.

4.3 CONCLUSIONS 
In conclusion, the GAMs developed here are a useful 
way of visualising spatial and temporal variation in 
species abundance. They are relatively quick to run 
and provide accurate results for the majority of species. 
However, there are a few species – those with small 
sample sizes, recent colonisers, or flocking waterbirds 
– for which the GAMs perform poorly. It is also not 
possible to accurately model trends in Shetland. These 
issues may be resolved in future years as more data 
accumulate. In the future it would be useful to develop 
a quicker method for obtaining confidence intervals.
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Model with two-level island term Model with seven-level island term

Species (scientific name) Average 
number of 

yearly counts 
> 0

Correlation 
coefficient

Fitting time Correlation 
coefficient

Fitting 
time

Blackbird (Turdus merula) 2515.7 0.633 (0.618–0.647) 06:50:00 0.630 (0.608–0.652) 11:17:20

Blackcap (Sylvia atricapilla) 1685.1 0.594 (0.584–0.605) 00:33:29 0.595 (0.578–0.611) 00:44:58

Bullfinch (Pyrrhula pyrrhula) 637.1 0.290 (0.283–0.296) 00:43:09 0.291 (0.281–0.301) 00:32:02

Barn Owl (Tyto alba) 47.1 0.161 (0.148–0.173) 00:31:14 0.162 (0.152–0.172) 00:35:43

Blue Tit (Cyanistes caeruleus) 2368.9 0.606 (0.586–0.626) 01:10:12 0.608 (0.595–0.621) 01:10:55

Buzzard (Buteo buteo) 1070.2 0.563 (0.557–0.57) 00:33:00 0.564 (0.551–0.577) 00:33:09

Carrion Crow (Corvus corone) 2420.7 0.468 (0.439–0.496) 01:30:00 0.478 (0.463–0.492) 00:59:03

Cormorant (Phalacrocorax carbo) 225.5 0.288 (0.268–0.308) 00:43:00 0.289 (0.278–0.300) 00:48:08

Corn Bunting (Emberiza calandra) 140.8 0.294 (0.276–0.311) 00:32:00 0.294 (0.272–0.315) 00:36:59

Chiffchaff (Phylloscopus collybita) 1598.5 0.651 (0.639–0.662) 00:41:00 0.650 (0.637–0.663) 01:37:31

Collared Dove (Streptopelia decaocto) 1363.6 0.551 (0.540–0.563) 00:28:00 0.550 (0.529–0.570) 00:38:37

Canada Goose (Branta canadensis) 507.9 0.323 (0.301–0.345) 00:25:00 0.322 (0.299–0.344) 00:26:38

Chaffinch (Fringilla coelebs) 2542.0 0.485 (0.456–0.514) 04:45:00 0.484 (0.460–0.508) 00:33:52

Cuckoo (Cuculus canorus) 690.9 0.367 (0.359–0.376) 00:16:00 0.367 (0.350–0.384) 00:19:12

Coot (Fulica atra) 268.8 0.260 (0.246–0.274) 00:36:00 0.265 (0.247–0.283) 00:43:33

Crossbill (Loxia curvirostra) 57.9 0.205 (0.190–0.219) 00:20:00 0.204 (0.195–0.214) 00:24:58

Common Sandpiper (Actitis hypoleucos) 66.2 0.190 (0.164–0.217) 00:16:00 0.194 (0.175–0.214) 00:20:22

Coal Tit (Periparus ater) 849.2 0.472 (0.449–0.494) 00:20:00 0.475 (0.461–0.489) 00:24:44

Curlew (Numenius arquata) 500.6 0.531 (0.520–0.542) 00:26:00 0.529 (0.512–0.547) 00:26:42

Dunnock (Prunella modularis) 2102.5 0.448 (0.431–0.466) 00:28:00 0.451 (0.429–0.474) 00:30:22

Dipper (Cinclus cinclus) 63.5 0.172 (0.154–0.189) 00:21:00 0.172 (0.156–0.187) 00:30:24

Little Egret (Egretta garzetta) 36.0 0.159 (0.145–0.173) 00:42:00 0.162 (0.147–0.176) 00:45:33

Feral Pigeon (Columba livia) 675.3 0.438 (0.425–0.452) 00:34:00 0.439 (0.418–0.459) 00:55:50

Green Woodpecker (Picus viridis) 846.1 0.575 (0.558–0.592) 00:13:00 0.575 (0.562–0.589) 00:18:40

Gadwall (Mareca strepera) 39.1 0.138 (0.118–0.157) 00:38:00 0.139 (0.116–0.161) 02:09:55

Great Black-backed Gull (Larus marinus) 83.8 0.149 (0.131–0.166) 00:22:00 0.150 (0.131–0.168) 00:23:18

Goldcrest (Regulus regulus) 813.0 0.429 (0.410–0.449) 00:24:00 0.431 (0.412–0.450) 00:27:06

Goosander (Mergus merganser) 42.4 0.136 (0.113–0.160) 00:26:00 0.139 (0.120–0.157) 01:41:28

Great Crested Grebe (Podiceps cristatus) 71.4 0.175 (0.157–0.192) 00:19:00 0.183 (0.164–0.202) 00:26:59

Grasshopper Warbler (Locustella naevia) 80.2 0.167 (0.151–0.183) 00:18:00 0.165 (0.150–0.180) 00:18:51

Greylag Goose (Anser anser) 228.0 0.265 (0.249–0.280) 00:16:00 0.258 (0.250–0.267) 00:18:53

Grey Wagtail (Motacilla cinerea) 221.5 0.181 (0.169–0.193) 00:11:00 0.177 (0.158–0.197) 00:12:55

Goldfinch (Carduelis carduelis) 1717.7 0.500 (0.485–0.514) 00:15:14 0.500 (0.486–0.513) 00:32:07

Golden Plover (Pluvialis apricaria) 64.1 0.263 (0.249–0.278) 00:23:19 0.259 (0.235–0.283) 00:22:42

Greenfinch (Chloris chloris) 1753.1 0.534 (0.521–0.547) 10:17:14 0.533 (0.520–0.546) 00:29:53

APPENDIX
Table A1. Cross validation results for each model structure. The correlation coefficient is the Spearmans’ 
correlation coefficient between observed and predicted values.
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Model with two-level island term Model with seven-level island term

Species (scientific name) Average 
number of 

yearly counts 
> 0

Correlation 
coefficient

Fitting time Correlation 
coefficient

Fitting 
time

Great Spotted Woodpecker  
(Dendrocopos major)

1136.2 0.539 (0.526–0.552) 00:16:50 0.542 (0.528–0.557) 00:27:38

Great Tit (Parus major) 2254.7 0.564 (0.550–0.579) 00:23:18 0.566 (0.548–0.583) 00:38:12

Garden Warbler (Sylvia borin) 452.5 0.293 (0.274–0.312) 00:28:00 0.294 (0.278–0.311) 00:24:26

Grey Heron (Ardea cinerea) 650.1 0.298 (0.288–0.308) 00:29:00 0.297 (0.280–0.314) 00:22:17

Hooded Crow (Corvus cornix) 119.5 0.342 (0.325–0.358) 00:21:00 0.342 (0.323–0.362) 00:36:40

House Martin (Delichon urbicum) 934.1 0.321 (0.302–0.340) 00:16:00 0.325 (0.308–0.342) 00:27:42

House Sparrow (Passer domesticus) 1621.0 0.615 (0.601–0.628) 05:14:00 0.613 (0.596–0.630) 00:45:30

Hobby (Falco subbuteo) 43.3 0.106 (0.097–0.115) 00:52:42 0.106 (0.101–0.112) 01:02:18

Jay (Garrulus glandarius) 807.1 0.462 (0.452–0.472) 00:36:00 0.461 (0.453–0.470) 00:26:21

Jackdaw (Coloeus monedula) 1790.8 0.453 (0.433–0.473) 01:03:00 0.455 (0.442–0.468) 00:28:40

Kestrel (Falco tinnunculus) 652.1 0.251 (0.237–0.264) 00:19:00 0.252 (0.243–0.261) 00:18:15

Kingfisher (Alcedo atthis) 56.0 0.136 (0.123–0.148) 00:30:00 0.135 (0.121–0.149) 00:23:48

Red Kite (Milvus milvus) 143.7 0.329 (0.318–0.34) 00:37:00 0.329 (0.315–0.342) 00:52:06

Lapwing (Vanellus vanellus) 671.5 0.445 (0.435–0.455) 01:33:00 0.446 (0.428–0.463) 00:59:52

Little Grebe (Tachybaptus ruficollis) 68.0 0.097 (0.077–0.117) 00:17:00 0.100 (0.093–0.106) 00:16:39

Linnet (Linaria cannabina) 1190.4 0.422 (0.407–0.438) 00:31:00 0.421 (0.407–0.434) 00:24:14

Little Owl (Athene noctua) 92.8 0.177 (0.170–0.184) 00:48:00 0.179 (0.172–0.187) 00:26:01

Lesser Redpoll (Acanthis cabaret) 168.5 0.286 (0.261–0.312) 00:22:00 0.290 (0.276–0.303) 00:21:46

Long-tailed Tit (Aegithalos caudatus) 1001.9 0.401 (0.390–0.411) 00:19:00 0.401 (0.392–0.409) 00:24:58

Lesser Whitethroat (Sylvia curruca) 279.4 0.297 (0.287–0.307) 00:15:00 0.300 (0.289–0.310) 00:20:30

Mistle Thrush (Turdus viscivorus) 1169.5 0.294 (0.279–0.309) 00:17:00 0.294 (0.276–0.312) 00:34:50

Mallard (Anas platyrhynchos) 1327.5 0.428 (0.410–0.446) 00:24:00 0.428 (0.410–0.445) 00:33:29

Magpie (Pica pica) 1926.4 0.659 (0.639–0.679) 00:24:00 0.663 (0.652–0.675) 00:31:07

Moorhen (Gallinula chloropus) 639.5 0.383 (0.367–0.400) 00:24:00 0.382 (0.363–0.402) 00:17:42

Mandarin duck (Aix galericulata) 32.5 0.122 (0.110–0.134) 00:22:00 0.121 (0.105–0.137) 00:26:33

Meadow Pipit (Anthus pratensis) 786.5 0.607 (0.584–0.630) 01:52:00 0.609 (0.595–0.624) 00:37:59

Mute Swan (Cygnus olor) 248.9 0.293 (0.27–0.316) 00:23:00 0.296 (0.283–0.309) 00:34:35

Marsh Tit (Poecile palustris) 147.1 0.250 (0.234–0.266) 00:15:00 0.253 (0.235–0.271) 00:24:44

Nightingale (Luscinia megarhynchos) 32.4 0.150 (0.132–0.167) 01:34:00 0.151 (0.140–0.162) 01:17:41

Nuthatch (Sitta europaea) 540.5 0.488 (0.472–0.504) 00:23:00 0.494 (0.477–0.511) 00:32:48

Oystercatcher (Haematopus ostralegus) 307.1 0.431 (0.414–0.449) 03:05:00 0.435 (0.419–0.450) 00:30:11

Grey Partridge (Perdix perdix) 219.5 0.316 (0.305–0.327) 01:12:00 0.316 (0.305–0.328) 00:45:54

Peregrine (Falco peregrinus) 41.8 0.109 (0.095–0.123) 00:26:00 0.110 (0.098–0.122) 00:26:04

Pied Flycatcher (Ficedula hypoleuca) 39.5 0.170 (0.148–0.192) 00:53:00 0.170 (0.157–0.184) 00:55:06

Pheasant (Phasianus colchicus) 1877.5 0.599 (0.581–0.616) 00:37:00 0.600 (0.583–0.617) 00:30:04

Pied Wagtail (Motacilla alba) 1273.9 0.304 (0.283–0.326) 00:15:00 0.308 (0.290–0.326) 00:27:38
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Model with two-level island term Model with seven-level island term

Species (scientific name) Average 
number of 

yearly counts 
> 0

Correlation 
coefficient

Fitting time Correlation 
coefficient

Fitting 
time

Robin (Erithacus rubecula) 2431.8 0.602 (0.582–0.622) 00:30:00 0.602 (0.590–0.615) 00:39:50

Reed Bunting (Emberiza schoeniclus) 504.4 0.372 (0.362–0.382) 00:20:00 0.372 (0.362–0.381) 00:26:57

Red Grouse (Lagopus lagopus) 147.0 0.369 (0.352–0.385) 00:40:00 0.368 (0.351–0.386) 00:35:56

Ring-necked Parakeet (Psittacula krameri) 77.9 0.325 (0.304–0.345) 01:02:00 0.327 (0.312–0.343) 03:09:37

Redshank (Tringa totanus) 71.1 0.162 (0.143–0.181) 00:15:00 0.161 (0.137–0.186) 00:18:23

Red-legged Partridge (Alectoris rufa) 570.4 0.519 (0.506–0.533) 00:21:22 0.519 (0.508–0.529) 00:49:17

Raven (Corvus corax) 311.5 0.414 (0.401–0.426) 00:18:13 0.413 (0.401–0.425) 01:00:47

Rook (Corvus frugilegus) 1334.6 0.442 (0.422–0.462) 10:52:22 0.441 (0.426–0.457) 01:15:18

Redstart (Phoenicurus phoenicurus) 181.9 0.347 (0.330–0.363) 00:22:43 0.345 (0.326–0.363) 00:56:26

Reed Warbler (Acrocephalus scirpaceus) 123.5 0.280 (0.256–0.303) 00:59:16 0.281 (0.267–0.295) 02:54:16

Skylark (Alauda arvensis) 1752.0 0.640 (0.621–0.660) 00:26:00 0.639 (0.628–0.651) 01:31:10

Stonechat (Saxicola rubicola) 136.7 0.291 (0.276–0.306) 00:27:00 0.288 (0.263–0.314) 02:12:39

Stock Dove (Columba oenas) 830.3 0.369 (0.360–0.378) 00:29:00 0.371 (0.356–0.386) 00:55:31

Spotted Flycatcher (Muscicapa striata) 185.4 0.184 (0.173–0.194) 00:14:00 0.184 (0.172–0.195) 00:30:26

Starling (Sturnus vulgaris) 1721.3 0.639 (0.626–0.653) 04:56:00 0.639 (0.630–0.649) 01:52:12

Sparrowhawk (Accipiter nisus) 346.3 0.115 (0.104–0.125) 00:14:00 0.115 (0.108–0.122) 00:25:50

Swift (Apus apus) 1014.3 0.410 (0.399–0.421) 00:21:00 0.410 (0.392–0.427) 00:24:40

Siskin (Spinus spinus) 192.5 0.332 (0.316–0.348) 00:19:00 0.332 (0.315–0.349) 00:22:27

Swallow (Hirundo rustica) 1996.6 0.579 (0.564–0.594) 01:12:00 0.579 (0.565–0.592) 00:39:25

Sand Martin (Riparia riparia) 127.5 0.147 (0.135–0.160) 00:19:00 0.145 (0.128–0.162) 00:23:15

Snipe (Gallinago gallinago) 163.4 0.325 (0.317–0.334) 00:26:00 0.328 (0.311–0.345) 00:18:43

Song Thrush (Turdus philomelos) 2049.9 0.484 (0.463–0.504) 00:28:00 0.487 (0.469–0.505) 00:31:33

Shelduck (Tadorna tadorna) 118.2 0.259 (0.241–0.278) 00:34:00 0.259 (0.237–0.281) 00:39:45

Sedge Warbler (Acrocephalus schoenobaenus) 281.1 0.312 (0.286–0.338) 00:29:41 0.313 (0.297–0.330) 00:31:20

Treecreeper (Certhia familiaris) 368.5 0.284 (0.267–0.301) 00:30:05 0.281 (0.267–0.296) 00:32:21

Turtle Dove (Streptopelia turtur) 127.9 0.304 (0.29–0.318) 10:12:38 0.305 (0.292–0.318) 00:52:50

Tawny Owl (Strix aluco) 93.0 0.139 (0.126–0.152) 00:17:42 0.142 (0.126–0.158) 00:35:56

Tree Pipit (Anthus trivialis) 144.6 0.297 (0.275–0.320) 00:18:00 0.298 (0.281–0.315) 00:28:37

Tree Sparrow (Passer montanus) 191.7 0.329 (0.308–0.349) 00:18:00 0.330 (0.322–0.338) 00:18:51

Tufted Duck (Aythya fuligula) 155.7 0.197 (0.179–0.215) 01:02:00 0.199 (0.179–0.220) 00:33:44

Wheatear (Oenanthe oenanthe) 335.3 0.373 (0.358–0.389) 00:24:00 0.374 (0.352–0.395) 00:27:04

Whinchat (Saxicola rubetra) 74.9 0.208 (0.192–0.224) 00:25:00 0.210 (0.197–0.222) 00:32:25

Whitethroat (Sylvia communis) 1386.8 0.577 (0.562–0.591) 00:20:00 0.582 (0.572–0.593) 00:23:03

Wood Warbler (Phylloscopus sibilatrix) 51.7 0.167 (0.146–0.187) 00:36:00 0.168 (0.154–0.182) 00:33:38

Woodpigeon (Columba palumbus) 2545.6 0.647 (0.635–0.659) 10:01:01 0.651 (0.638–0.664) 00:45:15

Wren (Troglodytes troglodytes) 2497.4 0.496 (0.477–0.516) 02:03:48 0.498 (0.473–0.524) 06:23:53

Willow Tit (Poecile montanus) 46.8 0.132 (0.123–0.140) 00:25:19 0.131 (0.117–0.144) 00:27:10

Willow Warbler (Phylloscopus trochilus) 1390.2 0.575 (0.568–0.582) 00:22:41 0.575 (0.560–0.590) 00:47:40

Yellowhammer (Emberiza citrinella) 1206.0 0.671 (0.657–0.685) 00:22:27 0.671 (0.659–0.683) 00:33:16

Yellow Wagtail (Motacilla flava) 158.5 0.325 (0.312–0.338) 00:15:46 0.323 (0.302–0.343) 00:23:10
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Figure A1. Map of NUTS regions. 
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Fine-scale mapping of relative abundance and trends, and extraction of small-area 
population trends for breeding birds

The BTO/JNCC/RSPB Breeding Bird Survey (BBS) is the UK’s main scheme for monitoring population changes in the UK’s common 
terrestrial breeding birds. Trends are published annually for up to 111 bird species for the UK, England, Scotland, Wales, Northern Ireland 
and nine regions within England. These trends are useful at showing large-scale population changes but we know that some species show 
spatially varying trends that are masked by national trends, and cannot be captured by regional trends due to sample size constraints. 
Previous work has developed maps of abundance for different periods of the BBS time series but these are now out of date and lack 
the temporal resolution of standard population trends. Here, we update previous work, aiming to produce annual predictions of relative 
abundance, which can vary spatially and temporally, for the 111 species featured in the published BBS trends from 1994 to 2016. We 
evaluated two methods, Generalised Additive Models (GAMs) and Geographically Weighted Regression (GWR) to model spatial and 
temporal variation in species abundance relative to habitat and elevation. 

The GAM method worked well, yielding models with acceptable fit metrics and producing annual maps of relative abundance which 
agreed well with known distribution and abundance patterns from Bird Atlas 2007–11. From these maps we extracted trend estimates 
which were highly correlated with the published long-term and 10-year trends. These maps could be useful for setting local conservation 
priorities and may be better than the published BBS trends at estimating abundance for areas with poor coverage or rare and localised 
species. However, further work is needed to validate small area trends derived in this way against independent data.

Jennifer A. Border & Simon Gillings (2019). Fine-scale mapping of relative abundance and trends, and extraction of small-area 
population trends for breeding birds. BTO Research Report 720, BTO, Thetford, UK.
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