Potential future distribution and abundance patterns of Common Buzzards *Buteo buteo*

Jennifer A. Border, Dario Massimino & Simon Gillings

Acknowledgements: Many thanks to the volunteers who participated in BBS and in *Bird Atlas* 2007–11. The BTO/JNCC/RSPB Breeding Bird Survey is a partnership jointly funded by the BTO, RSPB and JNCC, with fieldwork conducted by volunteers. *Bird Atlas* 2007–11 was a joint project between BTO, BirdWatch Ireland and the Scottish Ornithologists' Club. We would also like to thank Natural England for funding this work.

Potential future distribution and abundance patterns of Common Buzzards *Buteo buteo*

A report to Natural England

Jennifer A. Border, Dario Massimino & Simon Gillings

BTO Research Report 707

© British Trust for Ornithology 2018

BTO, The Nunnery, Thetford, Norfolk IP24 2PU, Tel: +44 (0)1842 750050 Email: info@bto.org Registered Charity Number 216652 (England & Wales), SC039193 (Scotland).

CONTENTS

Summary	5
1. Introduction	6
2. Methods	7
2.1 Data used in the analyses	7
2.1.1 Bird Atlas distribution data	7
2.1.2 Breeding Bird Survey data	7
2.2 Assessing current distribution and potential for range expansion	7
2.3 Modelling spatial variation in Buzzard densities	7
2.3.1 Converting counts to densities	8
2.3.2 Identifying environmental variables	8
2.3.3 Developing a Species Distribution Model for Buzzard densities	12
2.3.4 Assessing the predictive ability of the model	13
2.3 Assessing suitability of the unoccupied range	13
2.4 Predicting saturation densities of Buzzards	13
3. Results	14
3.1 Current distribution and potential for range expansion	14
3.2 Species Distribution Model of Buzzard densities	14
3.2.1 Generating density estimates from counts	14
3.2.2 Assessing the explanatory and predictive ability of the model	14
3.2.3 Predicted abundance and importance of environmental variables	17
3.3 Suitability of currently unoccupied range for Buzzards	19
3.4 Predicting Buzzard saturation densities	20
4. Discussion	22
4.1 Recommendations	23
5. References	24
Appendix A	
Appendix B	
Appendix C	35

SUMMARY

1. To contribute towards the definition of Favourable Conservation Status for the Common Buzzard *Buteo buteo*, estimates of local carrying capacity are required throughout England. In this report we aim to assess the potential for future expansion of the Buzzard breeding range in England and forecast potential densities in 10-km squares using species distribution models.

2. According to *Bird Atlas 2007–11*, Buzzards breed in 94% of English 10-km squares. Many of the 54 squares where Buzzards were present but not breeding, and the 34 where they were not recorded, are coastal (and contain little land) or are suburban/ urban areas with limited breeding habitat. Few unoccupied squares contain extensive tracts of suitable breeding habitat so we assess the potential for future range expansion to be limited.

3. To inform the selection of environmental variables required for distribution modelling, a literature review was conducted. This identified 25 factors likely to positively or negatively influence Buzzard presence or abundance; from these we sourced 25 spatially explicit variables. Seven were highly inter-correlated and were not used in models. For some potentially important factors we were unable to source spatial data to incorporate into models.

4. Buzzard abundance data were obtained from the BTO/JNCC/RSPB Breeding Bird Survey, giving numbers of birds counted in a stratified random sample of over 5,000 1-km squares. Count data were corrected for detectability using distance sampling to yield densities (birds per surveyed 1-km square). Two metrics were calculated for modelling: a) maximum observed density per square, and b) mean observed density per square, both calculated over the most recent five years.

5. Generalised additive models were used to relate the two metrics of Buzzard density to the chosen environmental variables. Ten-fold cross validation was used to assess model performance and the effects of individual environmental variables were checked for biological realism. Density predictions were made for all 1-km squares in England, then summed to give estimates per 10-km square.

6. Models trained on maximum observed densities (the "maximum density model") and mean observed density (the "mean density model") performed similarly well; performance was reasonable, and good by abundance modelling standards. Comparisons of predictions and observations showed that models were reasonably well calibrated but they were unable to accurately predict the highest observed densities. Nevertheless, predicted densities were higher compared to published density estimates.

7. The long-term trend in density in each 100-km square was assessed for evidence of stability. Densities were high and stable in the west compared to low but rapidly increasing in the east with little evidence of densities plateauing. In the west, annual densities in the stable parts of the trend fell short of densities predicted from the maximum density model but matched those from the mean density model. In areas of rapid increase in the east, observed densities have already exceeded predictions from the mean density model and appear likely to exceed those from the maximum density model in future.

8. In conclusion, we can be highly confident about the extent of the Buzzards breeding range and its limited scope to expand further. The species distribution models are as robust as we can expect with the data available and they perform comparably to other models of abundance. However, many of the predicted densities are high compared to those in the literature, although it should be noted many of these are quite old and limiting factors may have reduced since then.

9. Further, the ongoing population increase in eastern England and anticipated exceedance of our density predictions indicates that correlative relationships built on variables such as land cover are unable to capture all the fine-scale local environmental influences acting on Buzzards, thereby limiting the application of these models for local management purposes. Mechanistic models using demographic rates are likely to yield more robust predictions.

1. INTRODUCTION

The Common Buzzard, Buteo buteo (Buzzard hereafter) is a large raptor which resides in England year round. England's Buzzard population declined in the late 1950s due to plummeting Rabbit Orytolagus cuniculus populations from the myxomatosis virus (Taylor et al., 1988), persecution in the 18th, 19th and early 20th centuries (Elliott & Avery, 1991), and organochloride pesticides in the 1950s and 1960s (Parkin & Knox, 2010). However, in the last 40 years the Buzzard population has undergone a rapid increase and associated range expansion, more than doubling its previous range size (Balmer et al., 2013). Reasons for this expansion are not yet well understood, though the reduction in illegal killing (Prytherch, 2013), the ban on organochloride pesticides which came into force in the 1984, recovery of Rabbit populations and upland afforestation are all likely to have played a role (Taylor et al., 1988; Balmer et al., 2013).

In the 20 years between the breeding distribution atlases of 1988-91 (Gibbons et al., 1993) and 2008-11 (Balmer et al., 2013) Buzzard range has expanded eastwards leading to the colonization of eastern Britain, plus the Isle of Man and the Channel Islands, while territory density has increased in western areas. There have been a few small-scale local studies on Buzzard densities in the UK (e.g. Dare & Barry, 1990), and some older ones covering Britain or the UK as a whole (e.g. Moore, 1965; Taylor et al., 1988, Clements, 2002). However, there is still little understanding of how much further Buzzards could spread and how much more populations could increase until they reach the limit of their local environment. There is also little understanding of the influence of environmental variables on Buzzard densities; again, there have been a several small-scale studies looking at correlations between certain environmental variables and breeding success (Austin & Houston, 1997, Sim et al., 2001; Krüger, 2004; Rooney & Montgomery, 2013) or local breeding densities (Graham et al., 1995, Sim et al., 2001), but no large scale studies to identify the key influences on Buzzards across the country.

Conservation and management decisions relating to Buzzards need to take account of these changes, but it is unclear whether populations have stabilised or how much further Buzzards could spread and increase. In particular, information on the potential future extent of Buzzard distribution and expected densities are needed for an assessment of Favourable Conservation Status (FCS) being undertaken by Natural England. FCS requires "securing the inherent genetic diversity of a species" and "maintaining a viable representation across their natural range and distribution". The species must be either stable or increasing and have good prospects of continuing to do so in the future (for more details see: http://jncc.defra.gov.uk/pdf/ FCS18 InterAgencyStatement.pdf). Ideally such information would be based on a detailed population model considering demographic rates including survival, productivity, dispersal and density dependence and how these relate to habitat suitability. An alternative approach is to use species distribution models (SDM; Franklin, 2010). SDMs seek to identify the relationships between the presence or abundance of a species and various biologically limiting environmental factors. Knowledge of these relationships can be used to make predictions of species presence or abundance in new settings or under new environmental conditions. In this study we assess whether an SDM approach can help inform the production of the FCS statement. Specifically we aim to:

1. Assess the current 10-km resolution distribution of Buzzards in England, identify unoccupied areas and assess their potential to support breeding Buzzards.

2. Produce 10-km resolution estimates of the saturation density of breeding Buzzards throughout England.

2. METHODS

2.1 Data used in the analyses

The following datasets on Buzzard distribution and abundance were used in these analyses.

2.1.1 Bird Atlas distribution data

The current range extent of Buzzards was determined from Bird Atlas 2007-11 (Balmer et al., 2013). The atlas presents the latest comprehensive information on the distribution of breeding Buzzards at a 10-km resolution. Full field methods are in Balmer et al. (2013) but in brief each 10-km square was surveyed to assess the likelihood of breeding by each bird species, using standard evidence of breeding criteria. Following the four years of surveys, each 10-km square was assigned one of five categories: i) absent, ii) present but no breeding evidence, iii) possible breeding, iv) probable breeding or v) confirmed breeding. Note that for breeding evidence to be associated with a square, birds must be seen/heard using the square, displaying a number of behaviours that could constitute breeding, and the behaviour must be observed in suitable breeding habitat. For this species, 10-km squares where the species was present but no breeding evidence was assigned are most likely to arise either because of a lack of suitable breeding habitat (e.g. dense urban fabric) or because birds were not using the square (e.g. migrating over the square).

2.1.2 Breeding Bird Survey data

Abundance data for modelling spatial patterns of abundance and for assessing long-term trends came from the BTO/JNCC/RSPB Breeding Bird Survey (BBS; Harris et al., 2017). The survey has been conducted since 1994 and uses a stratified random sampling design. BBS squares are allocated randomly to volunteers. Surveys are conducted during 6am-10am and volunteers are requested not to survey in strong winds and heavy rain. In each square two 1-km transect lines are walked at a slow constant pace and all birds seen or heard are recorded. The transect lines are ideally 500 m apart and 250 m from the edge of the 1-km square, though some deviation may be necessary due to access rights, obstacles and terrain. Each transect line is split into five 200 m sections for recording purposes. Each square receives two visits per year, one in April to mid-May and a second in mid-May to the end of June. The following habitat descriptions are assigned to each 200 m transect section: woodland, scrubland, semi-natural grasslands/marsh, heathland and bogs, farmland, human sites, waterbodies, coastal and inland rock. Birds are recorded in three distance categories measured at right-angles to the transect

line: < 25 m, 25–100 m, 100+ m. Birds seen only in flight are recorded separately. Recording of birds in distance bands allows a formal evaluation of how the detectability of a species declines with distance from the transect line, enabling numbers of birds encountered to be corrected for under-detection to derive estimates of absolute density (Buckland et al., 2005). For most species the majority of individuals are recorded in one of the distance bands, with very few encountered only in flight. Exceptions are hirundines, Skylarks Alauda arvensis and raptors such as Buzzard. For the purposes of this report we refer to all birds encountered in distance bands as 'perched birds'. Hence we are able to assess how detectability varies with distance for perched birds and make due corrections. Detectability corrections are not possible for flying birds and we have to assume that at any distance (within the 1-km square) flying birds would have been uniformly detectable.

2.2 Assessing current distribution and potential for range expansion

Bird Atlas data (Section 2.1.1) were used to identify all squares were at least possible breeding evidence was noted (= breeding range) and all squares where the species was absent or present only (= unsuitable and potential future range). The latter list of squares was retained for later use. To aid interpretation we determined the land area of each 10-km square.

2.3 Modelling spatial variation in Buzzard densities

Producing species distribution models to enable predictions of Buzzard density per 10-km square involved the following seven steps:

- Convert observed counts on transects to densities (birds per km²);
- 2. Identify key environmental variables likely to determine Buzzard density and obtain spatially referenced data for every 1-km square in the study region;
- Develop a statistical species distribution model relating the observed density of Buzzards in surveyed squares to the identified environmental variables;
- 4. Use cross-validation to determine the explanatory power of the best model;
- 5. Use the model to make predictions for every 1-km square in the study region;

- Sum 1-km predictions per 10-km square to derive estimates of birds per 10-km square (birds per 100 km²);
- 7. Sense-check densities derived in 5) and 6) with published estimates of Buzzard density.

Steps 1–4 are explained in more detail in the following sections.

2.3.1 Converting counts to densities

To convert transect counts to densities of birds per 1-km square, raw count data of Buzzards in each transect section were adjusted via the program Distance (Buckland et al., 2005) to account for detectability using the model: *distance* ~ *habitat* + *visit* where habitat was the main habitat assigned to the transect section and visit was a categorical factor indicating whether the count was derived from the early or late visit. For this purpose some habitat types (waterbodies, coastal and inland rock) that were very rarely occupied by Buzzards had to be combined into a single 'open habitat' category. Detectability estimates were calculated for each year, although as year is not a model covariate the same transect section will get the same detectability over years (unless habitat has changed).

These detectability estimates were used to calculate densities by multiplying the number of individuals in each 200 m section in the distance bands < 25 m and 25–100 m by the habitat-specific detectability coefficients. Sightings in the 100 m+ distance band were discarded due to the lack of an upper bound for this category preventing accurate density estimates. Including Buzzards sighted up to 100 m away means each 200 m transect section covers 400 m², so this density was expressed in individuals/4 ha. This was then multiplied by 2.5 to obtain individuals/10ha, under the assumption that density beyond 100 m is the same as density within 100 m. The total number of flying birds detected in each 200 m section was then added to this density estimate. Given the size and high visibility of flying Buzzards, we assumed flying birds were equally detectable throughout the 1-km square. Then the counts were summed over all transect sections to get an estimated density per 1-km square for each visit and each survey year. For each square and survey year the visit with the highest total Buzzard density was selected.

In the development of previous SDMs using BBS data we have summarised multiple years of data from each surveyed square to produce a single estimate per square, usually taking the maximum density across years (e.g. Massimino et al. 2017a). This approach is adopted in an effort to reduce the influence of stochasticity in the observed counts, either due to failure to detect birds or chance year to year fluctuations in abundance. A further argument for this approach is it may more closely reflect the upper bound of density that squares may attain, which is the desired aim of this modelling exercise. However, for a species such as Buzzard, with a potentially large home range, this approach could artificially inflate local density estimates and the mean density across years may be a more realistic figure. For this work we calculated maximum observed density and mean observed density for each surveyed square over the 5-year period, 2012 to 2016. We then repeated all analyses described below using both metrics and we discuss which of these approaches is likely to be most appropriate for Buzzards in Section 3.2.2 and Section 4. It should be noted here that it is not possible to distinguish between breeding and nonbreeding Buzzards in these data.

2.3.2 Identifying environmental variables

A literature search was undertaken to identify relevant environmental variables likely to determine Buzzard occurrence and abundance (Table 1). Table 2 lists the variables for which we were able to acquire contemporary spatially referenced data. There are some variables that ideally we would have liked to include but data are either completely lacking or available at an inappropriate spatial or temporal resolution. These include information on the abundance of small mammals such as voles, other rodents and moles, abundance of amphibians and a measure of the number of footpaths in an area as a proxy of human disturbance. There is also evidence that songbirds, thrushes and medium-sized birds are a good food source for Buzzards (Taylor et al., 1988, Jedrzejewski et al., 1994, Swann and Etheridge, 1995, Austin & Houston 1997, Selås, 2001, Rooney & Montgomery, 2013). However, diet seems to be highly dependent on what is available in the local area and these bird food sources tend to be used when other larger food sources are unavailable (Austin & Houston, 1997, Rooney & Montgomery, 2013). Also, including so many species of birds together as a variable is likely to reflect overall habitat quality rather than prey abundance. For these reasons we did not use songbird abundance as a covariate. The following sections detail how the selected environmental variables were sourced.

Table 1. Factors identified from literature review that positively or negatively affect Buzzard distribution and abundance

Environmental factor	Direction of expected effect/explanation	Reference				
Rabbit abundance	Positive effect, important food source	Rooney & Montgomery, 2013; Swann & Etheridge, 1995; Austin & Houston, 1997; Graham et al., 1995				
Corvid abundance	Positive effect, important food source	Rooney & Montgomery, 2013; Sim et al., 2001				
Abundance of medium sized birds (thrushes, woodpeckers)	Positive effect, important food source	Rooney & Montgomery, 2013; J ę drzejewski et al., 1994				
Rat/rodent abundance	Positive effect, important food source	Rooney & Montgomery 2013; Goszczynski, 2001				
Amphibians/toads abundance	Positive effect, important food source	Swann & Etheridge, 1995; Selås, 2001				
Vole and mole abundance	Positive effect, important food source	Swann & Etheridge, 1995; Selås, 2001; Wuczynski, 2003; Graham et al., 1995				
Woodpigeon and Pheasant abundance	Positive effect, important food source	Swann & Etheridge, 1995; Selås, 2001				
Brown Hare abundance	Positive effect, important food source	Swann & Etheridge, 1995				
Passerine abundance including Chaffinch	Positive effect, important food source	Swann & Etheridge, 1995; Selås, 2001; Taylor et al., 1988; Austin & Houston, 1997				
Persecution	Negative, limits population growth	Elliot & Avery, 1991; Swann & Etheridge, 1995;Taylor et al., 1988; Goszczynski, et al. 2005				
Rainfall	Negatively effects reproductive success	Krüger, 2002; 2004				
Human disturbance	Negatively effects reproductive success	Krüger, 2004				
Competition	Negatively effects reproductive success	Krüger, 2004				
Cold temperatures	Reduces fitness	Krüger, 2002				
Open areas	Positive relationship as used for foraging	Kruger, 2002				
Number of buildings	Negative effect, unsuitable habitat	Krüger, 2002				
Coniferous plantations	Positive relationship, good nesting and foraging habitat	Newton et al., 1982				
Agricultural land	Positive relationship, good nesting and foraging habitat	Baltag et al., 2013				
Natural perches-bushes and shrubs	Positive relationship, good nesting and foraging habitat	Baltag et al., 2013				
Woodland fringes and scrubs	Good prey densities	Dare & Barry, 1990				
Unimproved pasture	Positive relationship, good nesting and foraging habitat	Sim et al., 2001				
Mature deciduous woodlands	Positive relationship, good nesting and foraging habitat	Sim et al., 2001; Gibbons et al., 1994				
Corvids	Negative, predate on chicks, cause nest failure	Sim et al., 2001				
Agricultural intensification	Possible negative effect, makes habitat more unsuitable	Sim et al., 2001				
Grazed pasture	Positive relationship, good nesting and foraging habitat	Gibbons et al., 1994				

Influence	Variable	Data source
Prey availability	Rabbit relative abundance per1-km	Modelled BBS mammal counts ¹
	Brown Hare relative abundance per 1-km	Modelled BBS mammal counts ¹
	Mean Pheasant count per 10-km	Bird Atlas 2007–11 ²
	Mean corvid count per 10-km	Bird Atlas 2007–11 ²
Predation/competition	Mean corvid count per 10-km	Bird Atlas 2007–11 ²
	Goshawk presence/absence	Bird Atlas 2007–11 ²
	Mean Buzzard count from Bird Atlas	Bird Atlas 2007–11 ²
Habitat	% cover semi-natural grassland	2015 Land Cover Map ³
	% cover improved grassland	2015 Land Cover Map ³
	% cover arable	2015 Land Cover Map ³
	% cover built up areas and gardens	2015 Land Cover Map ³
	% cover of mature trees	National Forest Inventory for 2011 ⁴
	% tree cover	Pan-European HRL Tree Cover Density 2012 ⁵
	Log ratio of % cover of coniferous to deciduous woodland	2015 Land Cover Map ³
Climate	Mean monthly temperature over whole year (°C)	UKCP096
	Mean monthly breeding temperature (°C)	UKCP09 ⁶
	Mean monthly wintering temperature (°C)	UKCP09 ⁶
	Mean of total monthly precipitation over whole year (mm)	UKCP09 ⁶
	Mean of total monthly breeding precipitation (mm)	UKCP09 ⁶
	Mean of total monthly wintering precipitation (mm)	UKCP09 ⁶
	Total precipitation over whole year (mm)	UKCP09 ⁶
	Total breeding precipitation (mm)	UKCP09 ⁶
	Total monthly wintering precipitation (mm)	UKCP096
Topography	Slope (degrees)	GGIAR-SRTM 90m raster ⁷
	Elevation (m above sea level)	GGIAR-SRTM 90m raster ⁷

Table 2. A summary of the environmental variables collated and their sources. The variables shown in *bold italics* were those retained for use in the models after excluding highly correlated ones.

¹ (Massimino et al., in review)

² (Balmer et al., 2013)

³ (Rowland et al., 2017)

⁴ Forestry Commission (https://www.forestry.gov.uk/inventory)

⁵ Copernicus (land.copernicus.eu/pan-european/high-resolution-layers)

⁶ Met Office https://www.metoffice.gov.uk/climate/uk/data/ukcp09/datasets#monthly

⁷ (Jarvis et al., 2008, available at http://srtm.csi.cgiar.org)

Prey availability

Data on abundance of European Rabbit and Brown Hare Lepus europaeus were extracted from Massimino et al. (in review) which gives spatially interpolated estimates (at 1-km resolution) of relative abundance for mammals across Britain. It is important to note that these values are not densities or 'real abundances' but an index of abundance. Common Pheasant Phasianus colchicus abundance came from Bird Atlas 2007–11 (Balmer et al., 2013) data. Using a sample of timed tetrad visits in each 10-km square we calculated the mean count per survey hour for Common Pheasant to give a measure of relative abundance per 10-km square. In the same way we calculated the mean count per survey hour for each of Carrion Crow Corvus corone, Hooded Crow Corvus Cornix, Jay Garrulus glandarius, Raven Corvus corax and Rook Corvus frugilegus, and then summed these values to give a measure of corvid relative abundance for each 10-km square.

Predation/competition

Corvids (crows) are both potential prey items and potential predators of Buzzard chicks, and the variable mean corvid count per 10-km square is explained in the prey availability section above. To reflect the abundance of Northern Goshawks Accipiter gentilis we used the presence or absence of breeding Goshawks in each 10-km square because densities of this species are so low the data were likely to be highly zero inflated and there is minimal variation in density between squares. In order to account for intraspecific competition, data on Buzzard abundance was included using mean count per survey hour at the 10-km square resolution. This variable is also likely to provide a further proxy for the suitability of 10-km squares for Buzzards and in some way compensates for the lack of detailed habitat quality data (e.g. of other mammalian prey). The atlas dataset is an entirely different dataset from the BBS data set used as the dependent variable (see section 2.1), and is collected using different methods, therefore including it as a variable will not compromise model independence.

Habitat

Land cover data came from the 1-km square percentage cover summary of the 2015 Land Cover Map (LCM) from the Centre for Ecology and Hydrology (Rowland et al., 2017). The percentage cover of Improved Grassland and Arable (encompassing Arable and Horticultural habitat) were taken directly from this dataset. For the other variables, land cover categories within the LCM data set were combined to create two broader categories: (i) Semi-Natural Grasslands, inclusive of neutral grassland, calcareous grassland, acid grassland,

log10((% cover coniferous woodland+0.01) / (% cover deciduous woodland+0.01))

The 0.01 was added to all counts to avoid obtaining infinite values when the percentage cover equalled zero.

Data on percentage tree cover came from the Copernicus Pan-European HRL Tree Cover Density 2012 raster dataset (HRL; land.copernicus.eu/pan-european/ high-resolution-layers). The dataset consists of a raster of 20 m resolution giving the percentage tree cover per pixel. The data were re-projected from the European ETRS89 grid to the British National Grid and percent cover estimates were derived for each 1-km square. This dataset includes single trees and hedgerows and was therefore preferred over the 2015 LCM which only includes blocks of trees.

To determine the percentage cover of mature woodland we used the Forestry Commission's National Forest Inventory for 2011 (https://www.forestry.gov.uk/ inventory). Area of mature woodland was extracted for each 1-km square by intersection of the forestry shape file and a polygon layer of 1-km squares in ARCGIS.

Climate (temperature and precipitation)

Gridded climate data at the 5 km resolution were obtained from the Metoffice UKCP09 (available at: www. metoffice.gov.uk/climatechange/science/monitoring/ ukcp09/download/index.html). The data are generated for a regular 5 km grid via regression and interpolation of data from the irregular weather station network, taking into account longitude, latitude, elevation, terrain shape, coastal influence, and urban land use (Perry & Hollis, 2004). For year round conditions mean monthly temperature and total monthly rainfall were averaged over all months of the year. To encompass conditions when the birds were breeding we used the mean monthly temperatures and the total monthly rainfall averaged over the months March, April, May and June. For winter conditions, the mean monthly temperatures and the total rainfall were averaged over the months of December, January and February before the breeding season of interest (i.e. December 2010 for the 2011 survey). For rainfall we also calculated the total rainfall for each period (yearly, breeding, wintering) by

summing the monthly total values. These annual values for each 5 km square were then averaged over the years 2012 to 2016 to match the BBS data used in models.

Topography (elevation and slope)

Elevation (in meters above sea level) was extracted from the GGIAR-SRTM 90 m raster (Jarvis et al., 2008) taking the mean elevation over each 1-km square. Slope was calculated from elevation in ARCGIS (ESRI 2011). The slope of each elevation raster cell is the maximum rate of change in elevation in one raster cell compared to its eight neighbours. The lower slope values indicate flatter areas, higher values indicate steeper areas. The mean slope was taken for each 1-km square.

2.3.3 Developing a Species Distribution Model for Buzzard densities

Prior to attempting future predictions we developed models to test how well the environmental variables could explain current observed spatial variation in Buzzard abundance. We chose to use Buzzard data from the whole of Britain rather than just England to increase the sample size and particularly to allow better parameterisation of predictions in upland sites of which there are relatively few in England. Generalised Additive Models (GAMs) were used to quantify the form of relationship between environmental factors and Buzzard abundance. GAMs were chosen as they allow non-linear relationships which are more biologically plausible than linear effects for many of these variables. Additionally GAMs reduce the likelihood of extreme predictions arising when predicting outside the range of the model input data. For example, a strong positive linear relationship with forest cover might lead to implausibly high predictions of Buzzard abundance (in the 100s) in squares with very high forest cover, compared to the rest of Britain.

With so many potential environmental predictors it is very likely that pairs of variables could be very highly correlated (collinearity). In such cases, entering both variables into models can prevent the identification of the causal relationship. To test for the degree of collinearity, univariate models relating each environmental variable (from Table 2) to Buzzard abundance were run and Variance Inflation Factors (VIFs; Zuur et al., 2009) were calculated. Pearson's Product Moment Correlation Coefficients were also calculated among all pairwise combinations of variables. Ideally, variables with VIFs > 3 and correlations to other variables > 0.7 were removed. Where two or more variables were strongly correlated, variables with a stronger relationship to Buzzard abundance from the single models were preferred over variables with weaker relationships. In this way the climate variables mean breeding season temperature and mean breeding precipitation were selected to represent the climate and arable habitat and improved grassland habitat were combined into one category (farmed habitat). After combining, farmed habitat was no longer highly correlated to any of the other variables; however it still had a VIF > 3 due to moderate correlations with many different variables. Elevation also presented a problem, as it was highly correlated to the climate variables. Both of these variables are likely to be very important determinants of Buzzard abundance, therefore we decided to include them in the final model despite possible multi-collinearity issues. Multi-collinearity can lead to unstable parameter estimates that are very sensitive to changes in the model specification but it will not affect the overall fit or the predictions made, nor will it cause any bias in the parameter estimates (Studenmund, 2000; Kutner et al., 2004). The purpose of this model was mainly to make reliable predictions and not to determine how different environmental parameters influence Buzzards, therefore possible inaccuracies in parameter estimates will not interfere with the model's main purpose.

Next the chosen variables (shown in bold italic) were put into a model together. A negative binomial family was used to account for over-dispersion and a weight was included to account for regional variation in survey effort. Initially, smoothed terms, using thin plate splines, were applied to every variable but in order to avoid overfitting and to ensure biologically meaningful relationships, k was restricted to a maximum of 3, meaning only linear or quadratic relationships were allowed. Then smoothed terms were removed one at a time based on the effective degree of freedom (edf) values, where values close to 1 indicate a linear trend. The smoothed term with the lowest edf was removed and the Akaike Information Criterion (AIC) was used to compare the models with and without the smoothed term. If dropping a smoothed term resulted in a rise in AIC > 2 then the smoothed term was retained. No variables were removed from the model as all variables had been selected for inclusion based on scientific evidence and the objective was to create a good predictive model so a conservative model was preferred. Model residuals were examined visually to ensure a reasonable fit.

As mentioned earlier, these procedures were performed twice, once with the maximum observed density per square ("maximum density model") and again using the mean observed density per square ("mean density model").

2.3.4 Assessing the predictive ability of the model

The best model as outlined in the previous section is the one that uses the available variables optimally, but we need to assess how good it is at explaining Buzzard abundance with independent data (i.e. data not used to train the model). To assess this we conducted tenfold cross validation using the cvAUC package (Sing et al., 2005). The best model formulation was fitted using 90% of the data ('training data'). This model was then used to predict Buzzard abundance based on the variable values from the remaining 10% of the data ('test data'). The predicted abundances were then compared to the observed abundances from the test data using Spearman's Rank Correlation Coefficient. This process was repeated 10 times using a different 10% of the data for testing each time and the mean correlation coefficient (and 95% confidence intervals) across the 10 replicates was calculated. The predicted values for each of the 10 folds were also plotted against the observed BBS values to visually assess fit.

2.3 Assessing suitability of the unoccupied range

In section 2.2 we explained how existing atlas distribution data were used to identify 10-km squares that were currently unoccupied by breeding Buzzards. We used the SDM developed above to make predictions of the likely current abundance of Buzzards in the 1-km squares within these unoccupied squares to determine how suitable they were. For this analysis one minor change was made to the model formula: we removed the mean Buzzard count from Bird Atlas variable from the model because this variable might restrict the abundance of Buzzards predicted for these squares as they are squares where no Buzzards have yet been found breeding. Predictions made at 1-km resolution were summed for each 10-km square to assess square suitability. Two sets of predictions were made, based on the maximum density model and the mean density model. Model fit and the magnitude (and biological realism) of the densities predicted by these two models were investigated and one of them was selected as the most appropriate method to predict Buzzard densities.

2.4 Predicting saturation densities of Buzzards

Having developed a model and ascertained its ability to explain and predict currently observed Buzzard

densities, it was our intention to use the same environmental variables in a quantile regression model which would have given us the ability to predict the likely maximum density achievable under certain environmental conditions. However, currently available quantile regression methods are only designed to work with normally distributed data as opposed to count data (which typically follows a Poisson distribution, with a lower bound of zero). Transforming our densities to a normal distribution did not work as models then returned negative predicted densities which are biologically unrealistic.

Instead we adopted the following approach, using the model developed above to predict abundances and using locally generated population trends to ascertain the likelihood that predictions reflect realistic saturation densities. As Buzzards have spread across England at different times, and densities have had longer to stabilise in some areas, this analysis took a regional approach, using 100-km squares to delineate regions. First, the model created in section 2.3.3 was used to make predictions of Buzzard density in every 1-km square in England. These predictions were averaged in each 100-km square to give our nominal estimate of saturation density for that region. Next the full time series of BBS data in each 100-km square was used to generate a trend for that 100-km square. Squares which were only surveyed in one year were removed. The trends were produced using a simple Generalised Linear Model, similar to how national trends are produced. Buzzard density (from the detectability adjusted raw BBS count see section 2.3.1) was modelled as a function of year and 1-km square (both as factors) to account for repeat observations of the same square in multiple years. A weight was also included to account for regional variation in survey effort. These models were then used to predict the Buzzard density for each year and each surveyed 1-km square. The predict abundances were then averaged for each year, over all surveyed 1-km squares in each 100-km square, and the trend plotted. The 95% confidence intervals for the trend were determined by averaging the standard errors for all 1-km predictions within each 100-km square for each year and then multiplying by 1.96 and either adding or subtracting from the mean predicted value for the square and year to get the upper and lower confidence interval respectively. We looked for an asymptote in the trend indicating a levelling off of the Buzzard density and compared this to the predicted densities from the SDM.

3. RESULTS

3.1 Current distribution and potential for range expansion

The current distribution of Buzzards in England according to *Bird Atlas 2007–11* is shown in Figure 1, coloured to emphasise gaps. Buzzards were recorded with breeding evidence (possible, probable or confirmed breeding) in 94% of 10-km squares in England (Table 3). The only squares where Buzzards were not recorded were mostly coastal or highly urbanised (e.g. centre of London). Squares with birds present but apparently not breeding included urban areas, coastal eastern England and small parts of the Pennines. In western England only a few coastal squares and the Isle of Scilly do not have breeding evidence.

Table 3. The number of 10-km squares whereBuzzards were recorded as absent, presentbut not breeding, possibly breeding andprobably or confirmed breeding from *Bird*Atlas 2007–11.

Buzzard status	Number of 10-km squares
Absent	34
Present	54
Possible breeding	59
Probable or confirmed bre	eding 1,347

Figure 1. A map showing the current status of occupancy by Buzzards of 10-km squares throughout England, based on *Bird Atlas* 2007–11.

3.2 Species distribution model of Buzzard densities

3.2.1 Generating density estimates from counts

The total number of perched Buzzards detected in raw counts during 2012–16 was 5,248 and the total detected in flight was 10,808. Distance sampling, relating numbers in distance bands, produced an average detectability estimate of 0.49, indicating 49% of perched Buzzard individuals are detected within 100 m of the transect line (this number then needing to be extrapolated to the unsurveyed parts of the square, and flying birds added to produce final density). This is consistent with previous research where BBS data from 18 years were used (detection probability = 0.48, Johnston et al., 2014). There was moderate variation in detectability across habitats, with higher detectability in natural and semi-natural open habitats and human sites, intermediate detectability in farmland and lower detectability in woodland and scrubland. Variation between early and late visits was minimal.

Figure 2. The detectability function fitted to detected perched Buzzards. During the fitting of the curve detectability was permitted to vary with habitat and visit.

3.2.2 Assessing the explanatory and predictive ability of the model

The final model for current Buzzard abundance using the maximum density across years had an adjusted R-squared value of 0.19 and explained 23.4% of the model deviance. The final model for current Buzzard abundance using the mean density across years had an adjusted R-squared value of 0.17 and explained 24.4% of the model deviance.

For the maximum density model, from ten-fold cross validation the Spearmans' rank correlation coefficient between observed and predicted counts was 0.503

(CI: 0.476–0.531), for the mean density model this was 0.526 (CI: 0.498 – 0.554). Both of these values may not seem high but for models of count data they actually represent a very good fit (c.f. Johnston et al., 2013; Newson et al., 2015; Border et al., 2017). To put these figures in context we also determined the correlation between maximum Buzzard counts in the same 1-km square for the period of 2012–16 and the period of 2007–11 and the mean 1-km square Buzzard counts for the same two time periods. The resulting figures of 0.453 and 0.498 respectively indicated that even within the same square over a relatively short period of time, observed Buzzard counts may show substantial fluctuation.

When comparing observed densities versus predicted densities at the 1-km square level, the predicted densities from the maximum density models are low compared to the observed maximum densities (Figure 3a & c). However, when predictions are averaged to give a 10-km level prediction, the match between predicted and observed densities improves substantially (Figure 3b & d). One of the key differences is that the observed BBS data contains some extreme densities (30–50 Buzzards per 1-km square), which skew the distribution (Figure 3, Figure 4), whereas the modelled densities follow an approximately normal distribution (see Figure 5 in the next section). The results of the mean density models and the maximum density models are relatively similar.

Figure 3. Relationships between observed densities and predicted densities at different scales. a) and b) use the predictions from the maximum density model as the response; c) and d) use the predictions from the mean density model as the response. Separate graphs are shown for the individual 1-km squares (a, c) and for values averaged over all 1-km squares in each 10-km (b, d). The red line shows the 1:1 relationship expected from a perfectly calibrated model.

Figure 4. Maps showing a) observed maximum Buzzard density during 2012–16, b) predicted Buzzard density from the maximum density model, c) observed mean Buzzard density during 2012–16 and d) predicted Buzzard density from the mean density model. In a) and c) the observed BBS data were averaged over all 1-km BBS survey squares in each 10-km, in b) and d) the 1-km square predictions were averaged over all 1-km squares in each 10-km square. Black areas had no surveyed BBS squares during the study period or were excluded from modelling due to missing environmental data.

Examination of the density estimates from the maximum density model and mean density model indicated that the mean density model was more biologically realistic. Subsequent analyses use the mean density model results, with results of the maximum density model in Appendix A. Reasons for this decision are given in the Discussion.

3.2.3 Predicted abundance and importance of environmental variables

Predictions for Buzzard abundance in England (based on the mean density model) at the 1-km square level were in the range 0–10; when summed over all 1-km squares within a 10-km square predictions were in the range 0–482 (Figure 5). The predicted Buzzard abundances follow an approximately normal distribution, especially when summed over a 10-km square. Predicted Buzzard abundances for each 10-km square from the maximum density and mean density models are presented in Appendix B. In both cases these are from predictions for 1-km squares summed across all 1-km squares per 10-km.

Figure 5. Histograms of a) the predicted abundance of Buzzards in England per 1-km and b) the predicted abundance of Buzzards in England per 10- km (summed 1-km predictions), both from the mean density model.

Plots of the effect of all significant (P < 0.05) variables in the model are displayed in Figure 6. Buzzards were more abundant in areas with higher average breeding season temperatures and a higher percentage cover of farmland. High mean breeding season precipitation (above a monthly average of approximately 100 mm) was negatively associated with Buzzard abundance. Tree cover was positively associated with Buzzard abundance up to a point, when 40% of a 1-km square was covered in trees, further increases in tree cover did not correspond with further increases in Buzzards. Increases in the percentage of semi-natural grassland (up to 40%), and in the percentage of mature trees, were linked to small increases in Buzzard abundance. Built-up areas were negatively correlated with Buzzard abundance. There was a quadratic or possibly asymptotic effect of local mean Buzzard count from the Bird Atlas. Buzzards were most abundant at lower elevations and in areas with moderate slopes (as opposed to very flat or very mountainous areas). However, as mentioned earlier, there is a possibility that the parameter estimates for average breeding season temperature, elevation and farmed habitat may be affected by multi-collinearity and therefore these interpretations should be treated with caution. The presence and absence of Goshawks had a marginally significant positive effect on Buzzard abundance. Corvid abundance, Rabbit abundance, Brown Hare abundance and Pheasant abundance, all variables relating to food sources, were not significant (P > 0.05) in the model.

Figure 6. The effect of significant variables (P < 0.05) in final GAM model of Buzzard abundance. Buzzard abundance is modelled at the 1-km square level using the mean density model. The solid black line is the predicted effect of a variable when all other variables are set to their mean levels, the dotted black lines depict the 95% confidence interval, the grey dots are the raw data.

3.3 Suitability of currently unoccupied range for Buzzards

For the 86 10-km squares where Buzzards are either absent or present with no breeding evidence, Table 4 gives predicted total Buzzard abundances (summed 1-km abundances per 10-km). As mentioned earlier, these predictions were made from our above model but the variable, mean Buzzard count from Bird Atlas, was removed. Thirty-five of the squares do not have predictions for Buzzard abundance because data were missing for one or more of the environmental variables needed to make the prediction, usually due to very little of the square being on land. Based on these predictions, the squares in the east of Britain which are not right on the coast seem the most suitable for Buzzards (e.g. SE,TA, TF grid references). The squares with lower predicted Buzzard abundances often had very little land or were highly urbanized (e.g. TQ38, TQ37, TQ28, TQ48, all in central London). There were also a few squares with apparently high land cover and low predicted Buzzard abundance which were predominantly estuaries or sandbanks (e.g. TQ88, TA31, TA09).

Table 4. A list of all 10-km squares where Buzzards were absent or present without breeding evidence, with the % of the square on land (as determined by LCM 2015, Rowland et al., 2015), and the total abundance of Buzzards predicted to occur in that square from the mean density model (PA). Squares without a prediction represent gaps in the coverage of the environmental variables included in the model, usually due to very little of the square being on land.

10-km	Status	Land	PA	10-km	Status	Land	PA	 10-km	Status	Land	PA
NT69	present	0.62	-	SV91	present	13.03	-	 TL90	present	89.05	97
NU05	absent	4.74	-	SW65	absent	0.3	-	TQ18	present	100.00	26
NU14	present	15.53	-	SW81	absent	0.28	-	TQ26	present	100.00	40
NX90	present	7.83	9	SX03	present	0.44	-	TQ27	present	100.00	27
NX93	absent	1.42	-	SY07	present	2.47	-	TQ28	present	100.00	20
NZ25	present	100.00	87	SY38	absent	0.07	-	TQ37	present	100.00	19
NZ26	present	100.00	26	SY48	present	2.94	-	TQ38	present	100.00	17
NZ38	present	14.54	0	SY66	present	1.68	-	TQ47	absent	100.00	30
NZ39	absent	1.43	-	SY87	absent	3.25	-	TQ48	present	100.00	22
NZ41	absent	100.00	71	SZ28	absent	0.15	-	TQ78	present	98.16	61
NZ44	present	44.86	30	SZ99	present	9.2	1	TQ80	absent	3.19	-
NZ45	absent	15.54	5	TA02	present	83.31	49	TQ88	present	77.68	21
NZ46	absent	5.69	-	TA09	absent	22.27	15	TQ98	present	72.37	37
NZ52	present	81.18	26	TA14	present	100.00	146	TQ99	present	95.61	184
NZ53	absent	12.57	1	TA18	present	6.00	3	TR01	present	29.96	14
NZ62	present	31.69	20	TA26	absent	5.11	1	TR07	present	11.36	1
NZ72	absent	2.43	-	TA27	present	15.02	11	TR08	absent	24.40	-
NZ90	present	63.29	52	TA31	present	49.79	12	TR09	present	69.85	45
NZ91	absent	3.44	-	TA32	present	67.05	64	TR12	absent	0.93	-
SD16	absent	15.65	0	TA33	absent	5.57	4	TR27	absent	0.31	-
SD36	absent	41.02	-	TA40	present	9.08	-	TR33	absent	0.51	-
SE01	present	100.00	131	TA41	present	13.28	1	TR37	present	10.70	0
SE02	present	100.00	124	TA42	absent	0.12	-	TR46	absent	0.36	-
SE11	present	100.00	100	TF22	present	100.00	134	TR47	absent	0.06	-
SE13	present	100.00	45	TF33	present	100.00	101	TV49	absent	5.46	0
SS14	present	4.34	-	TF34	present	100.00	106	TV69	absent	4.90	0
ST25	absent	32.09	-	TF53	absent	6.49	-				
ST26	present	1.38	-	TF56	present	75.50	66				
SV80	present	3.08	-	TF58	absent	13.77	6				
SV81	present	7.96	-	TG24	present	11.57	5				
SV90	absent	0.47	-	TG51	present	17.45	8				

3.4 Predicting Buzzard saturation densities

The published population trend for Buzzards in England shows a 194% increase during 1995-2015 (Massimino et al. 2017b) but there is substantial variation in regional trends. Figure 7 displays the trends in Buzzard abundance during 1994–2017 for each 100-km square and shows a pattern of long-term stability in the west and ongoing increases in the east. Note that 100-km squares which only contained a very small amount of land or had large numbers of zero counts, preventing trend model convergence, were combined with adjacent squares (TV+TR+TQ; SV+SW; TG+TM; SC+NX). For three 100-km squares, TA, SE and TM, the earlier year counts were zeros across all 1-km squares and this meant the trend model would not converge. Therefore for these squares we truncated the BBS data to remove the years before Buzzards colonized this region (for SE: 1994–2002 were removed, for TA: 1994–2010, for TM: 1994-2002) and fitted the trend for the remainder of the time series.

The red band on the trend graphs is the 95 % confidence interval for the predicted mean Buzzard abundance per 1-km square across the region in question from our SDM. The predictions are averaged for all 1-km squares per 100-km, so theoretically encompass squares predicted to be unoccupied as well as those predicted to be occupied. In contrast, the trend line is based only on BBS squares that reported Buzzards at least once during the time series. Consequently we might not expect the trend line and predictions to coincide. We assessed the effect of this by creating a version of Figure 7 where the density predictions were averaged across only the BBS squares used to derive the trend but results were visually identical (Appendix C).

There is a distinctive regional divide with trends from squares in western Britain tending to reach an asymptote and stay relatively stable or remain stable throughout the entire time period, whereas squares in eastern Britain show a sharp increase in recent years and have yet to reach an asymptote. The predicted Buzzard abundance varies regionally, with the highest abundances predicted in the south-west and the lowest in the east. Generally, the modelled predictions from the maximum density model were higher than the observed trends (Appendix A) whereas those from the mean density model coincided with the observed trend better (Figure 7). In some eastern areas the trajectory of the trend suggests densities could increase beyond our predicted saturation densities based on either model. From this study, using the mean density model, we predicted mean densities of 161 Buzzards per 10-km square (across the whole of England), and maximum densities of 482 Buzzards per 10-km square. The mean densities predicted by this model are within the range of the recorded densities in the literature, though at the high end (Table 5).

Figure 7. Map showing how population trends (blue line and shading) and modelled saturation densities (red line and shading) vary by 100km square across England. Trends, which are all plotted to the same x-axis scale (1994–2017) and y-axis scale (0–7 birds km²) are based on a simple model of annual Buzzard densities in BBS squares with 95% confidence limits shown by blue shading. Saturation densities are from the species distribution model using the mean density across years per square and are averaged over all 1-km squares within the 100-km square.

Region	Study period	Density per 10-km square	Study
West Midlands(SO37/SO77)	1994–96	44 and 162	Sim et al., 2001
Whole of Britain	2001	0–120	Clements, 2002
North Somerset (75 km ²)	2001	222	*Prytherch, 1997/verbally
Bath & North Somerset (60 km ²)	2001	156	*J. Holmes (verbally) (Clements, 2002)
Dorset (120km ²)	1996	197–200	*Kenward et al., 2000
Postbridge, Devon (33 km ²)	1990–93	96-102	*Dare, 1998
Devon (2,620 km ²)	1983	50–66	*Sitters, 1988
Cambrian Mountains (475 km ²) farmland	1975–79	82	*Newton et al., 1982
Cambrian Mountains (475 km ²) upland	1975–79	48	*Newton et al., 1982
Snowdonia (926 km ²)	1977–84	11.9–66.7	Dare & Barry, 1990
Migneint-Hiraethog (440 km ²)	1977–84	28.1–59.7	Dare & Barry, 1990
Snowdonia (926 km ²)	1977–84	20–22	*Dare, 1995
Snowdonia (926 km ²)	2000	28–30	*Dare, 1995
Denbigh, Clwyd (440 km ²)	1977–84	28	*Dare, 1995
Upper Strathspey (94 km ²)	1971	28–30	*Halley, 1993
Upper Strathspey (94 km ²)	1988–89	46–48	*Halley, 1993
Whole of Britain	1983	4.5–36	Taylor et al., 1988
Whole of Britain	1954	For mean densities: an average of 11, maximum of 47.9, for maximum densities: average of 116	Moore, 1957
North Eastern Romania	2010-11	33.4–53.9	Baltag et al., 2013
Bulgaria	2006	34	Nikolvo et al., 2006
Poland	1993–2000	70–212	Wuczynski, 2003

Table 5. Buzzard densities from published population studies. Rows with an asterisk are taken from a review by Clements (2002). Densities were converted into individuals per 10-km square, applying a factor of 2 to densities reported in pairs.

4. **DISCUSSION**

Buzzards are currently breeding or likely to be breeding across the vast majority of 10-km squares in the UK. Unoccupied squares are mainly restricted to coastal areas or city centres where the habitat is unsuitable. However, our model did predict potential high Buzzard abundances for some squares in the east. This suggests that Buzzards are still expanding their range eastward. Our trend plots confirm this conclusion; trends in the east show no sign of plateauing yet. However, eastern population densities are currently still lower than western densities which stabilised prior to the onset of the BBS time series.

We extracted two metrics to summarise BBS data across years – the mean density per square and the

maximum density per square. Models using these metrics performed equally well in a statistical sense but we judged the maximum density model to overestimate densities in currently stable areas and to exceed published estimates to a biologically unrealistic degree (Appendix A Figure 1). As evident from the yearly trends here and our comparison of Buzzard counts between two 5-year periods, Buzzard densities may show substantial fluctuation from year to year. It is likely the maximum density model predictions are generally higher than the local trend because the SDM was trained on the maximum density in each square over a 5-year period whereas the trend production essentially generates an average density per square. For bird species with home ranges less than 1-km square, selecting the maximum count would compensate for failures in detection. However, Buzzards have a large

range size (on average 180–190 ha, Sim et al., 2001). There may be several 1-km squares on the edge of a Buzzard's range and it is impossible to predict which one the Buzzard may be occupying when the survey is undertaken. Selecting the maximum density of Buzzards over a 5 year period predisposes the selection towards extreme outlier counts (Figures 3 & 4) which may be the result of Buzzards passing through a square, or due to territorial disputes at territory boundaries, and are unlikely to reflect true breeding densities.

Our modelled results matched actual Buzzard abundances recorded from BBS (during 2012–16) reasonably well, especially when averaged over each 10-km square. There was a tendency for high outlier densities from the BBS survey data (Figure 3). These densities could be inflated by Buzzards passing through a square, or due to territorial disputes at territory boundaries so may not reflect true breeding densities. Further information on territory sizes would help in understanding any likely errors here. Compared to the literature our density estimates were at the high end of recorded ranges. However, the densities estimates from the literature for Britain are all at least 17 years old. Although many come from western areas which may have been stable over this period, those applying to the whole of Britain are likely to be out dated. But they can at the least give us confidence that the modelled predictions are not too low. A potential issue with our SDM is the predicted counts for eastern England. Buzzards are still colonising and expanding in this area so while our model accurately represents current densities it is likely to underestimate future densities. One option to deal with this is to train models using data from stable areas but for this to work they would need to mirror conditions in the east in all ways except for the pattern of colonisation history. In reality, it is unlikely that many areas of comparable low-lying arable land exist in western Britain for training a model to make predictions in eastern England.

In terms of relevant habitat characteristics to consider when attempting to match squares in the west and east, our model here suggests important variables are tree cover, farmed area, urban area, climate and topography. The variables included in the model to represent prey sources were not significant. Findings from other studies (Austin & Houston, 1997; Rooney & Montgomery, 2013) indicate that Buzzards are opportunist and will prey on whatever is available, from Rabbits, invertebrates and amphibians to other birds and carrion. Therefore, it is perhaps not so surprising that we failed to find a strong relationship between Buzzard abundance and individual food sources, as favoured food sources may vary substantially depending on what is locally available. Some of the variables likely to influence Buzzard abundance according to our literature review could not be included in models owing to a lack of suitable spatially referenced data. The most notable omission is human disturbance (Krüger, 2004). Therefore the amount of human disturbance in an area should also be considered in relation to our density estimates. The other variables we could not acquire data for were for prey items and as discussed above, this varies too widely from region to region to be a good predictor of Buzzard densities on a national scale so is unlikely to have affected conclusions.

The trends and density predictions produced here relate to numbers of birds in the breeding season. Counts in the breeding season may comprise a combination of breeding and non-breeding individuals but the data do not allow us to differentiate. Densities post breeding could be substantially higher once birds of the year have fledged. Densities may also vary spatially as birds disperse from breeding territories and potentially shift to habitats providing food in winter. Therefore the densities discussed here may bear little relationship to densities observed outside the breeding season.

4.1 Recommendations

We can be confident that the breeding range of the Buzzard has almost fully extended to all suitable 10-km squares, with only a few unoccupied squares capable of sustaining significant new populations. The species distribution models developed here are as good as we can currently hope to produce, being based on a large sample of high quality bird data and most of the key environmental variables. In a statistical sense, the models have reasonable predictive performance but predictions are high compared to published densities. We recommend using the predictions based on the mean density model to avoid over-estimating Buzzard abundance. However, the match between predictions and population trends varies regionally and it is likely predicted densities for eastern regions, where the Buzzard population is still increasing, are underestimates. Further modelling, using information from areas of stability, could help to inform use of densities in areas where populations are still increasing. Ultimately, the most robust estimates of density will likely come from mechanistic models that incorporate vital demographic rates, including productivity, survival, dispersal and density dependence.

5. REFERENCES

Austin, G. E. and Houston, D. C. (1997). The breeding performance of the Buzzard *Buteo buteo* in Argyll, Scotland and a comparison with other areas in Britain. *Bird Study* **44**: 146–154.

Balmer, D.E., Gillings, S., Caffrey, B.J., Swann, R.L., Downie, I.S., Fuller, R.J. (2013). *Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland.* BTO, Thetford.

Baltag, E. S. Pocora, V., Sfica, L. Bolboaca, E. (2013). Common Buzzard (*Buteo buteo*) population during winter season in North-Eastern Romania: The influences of density, habitat selection, and weather. *Ornis Fennica* **90**: 186–192.

Border, J.A., Newson, S.E., White, D.C.J., Gillings, S. (2017). Predicting the likely impact of urbanisation on bat populations using citizen science data, a case study for Norfolk, UK. *Landscape & Urban Planning* **162**: 44–55.

Buckland, S. T., Anderson, D. R., Burnham, K. P., & Laake, J.L. (2005). *Distance sampling*. John Wiley & Sons, Ltd.

Clements, R. (2002). The Common Buzzard in Britain: A new population estimate. *British Birds* **95**: 377–383.

Dare, P. J. and Barry, J. T. (1990). Population size, density and regularity in nest spacing of Buzzards *Buteo buteo* in two upland regions of north Wales. *Bird Study* **37**: 23–29.

Dare, P. J. (1995). Breeding success and territory of Buzzards *Buteo buteo* in Snowdonia and adjacent uplands of North Wales. *Welsh Birds* 1: 69-78.

Dare P. J. (1998). A Buzzard population on Dartmoor, 1955-1993. *Devon Birds* **51**.

Elliott, G.D. and Avery, M.I. (1991). A review of reports of buzzard persecution 1975-1989. *Bird Study*, **38**: 52–56.

ESRI. (2011). *ArcGIS Desktop: Release 10*. Redlands, CA: Environmental Systems Research Institute.

Franklin, J. 2010. *Mapping Species Distributions: Spatial Inference and Prediction*. Cambridge University Press, Cambridge.

Gibbons, D.W., Reid, J.B., Chapman, R.A. (1993). *The New Atlas of Breeding Birds in Britain and Ireland: 1988–1991.* T. & A.D. Poyser, London.

Gibbons, D.W., Gates, S., Green, R.E., Fuller, R.J.& Fuller, R.M. (1994). Buzzards *Buteo buteo* and Ravens *Corvus corax* in the uplands of Britain: limits to distribution and abundance. *Ibis* **137**: S75–S84.

Goszczynski, J. (2001). The breeding performance of the Common Buzzard *Buteo buteo* and Goshawk *Accipiter*

gentilis in central Poland', Acta Ornithologica 36: 105-110.

Goszczynski, J., Gryz, J. and Krauze, D. (2005). Fluctuations of a Common Buzzard *Buteo Buteo* population in Central Poland. *Acta Ornithologica* **40**: 75–78.

Graham, I.M., Redpath, S.M. and Thirgood, S.J. (1995). The diet and breeding density of Common Buzzards *Buteo buteo* in relation to indices of prey abundance. *Bird Study* **42**: 165–173.

Halley, D.J. (1993). Population changes and territorial distribution of Common Buzzards *Buteo buteo* in the Central Highlands, Scotland. *Bird Study* **40**: 24-30.

Harris, S.J., Massimino, D., Gillings, S., Eaton, M.A., Noble, D.G., Balmer, D.E., Procter, D. & Pearce-Higgins, J.W. (2017). *The Breeding Bird Survey 2016.* BTO Research Report **700**. British Trust for Ornithology, Thetford.

Jarvis, A., Reuter, H. I., Nelson, A., Guevara, E. 2008: *Holefilled SRTM for the globe Version 4.* – Available from the CGIAR-CSI SRTM 90 m Database: http://srtm.csi.cgiar.org.

Jędrzejewski, W., Szymura, A. and Jędrzejewska, B. (1994). Reproduction and food of the Buzzard *Buteo buteo* in relation to the abundance of rodents and birds in Białowieża National Park, Poland, *Ethology Ecology & Evolution* **6**: 179–190.

Johnston, A., Ausden, M., Dodd, A. M., Bradbury, R. B., Chamberlain, D. E., Jiguet, F., Thomas, C. D., Cook, A.S.C.P., Newson, S. E., Ockendon, N., Rehfisch, M. M., Roos, S., Thaxter, C. B., Brown, A., Crick, H.Q.P., Douse, A., Mccall, R. A., Pontier, H., Stroud, D. A., Cadiou, B., Crowe, O., Deceuninck, B., Hornman, M. & Pearce-Higgins, J. (2013). Observed and predicted effects of climate change on species abundance in protected areas. *Nature Climate Change* **3**: 1055-1061.

Johnston, A., Newson S. E., Risely, K., Musgrove A.J., Massimino D., Baillie, S.R. & Pearce-Higgins, J. W. (2014). Species traits explain variation in detectability of UK birds. *Bird Study* **61**: 340-350.

Kenward, R. E., Walls, S. S. Hodder, K. H., Pakhala, M., Freeman, S. N., & Simpson, V. R. (2000). The prevalence of non-breeders in raptor populations: evidence from rings, radio-tags and transect surveys. *Oikos* **91**: 271-279.

Krüger, O. (2002). Dissecting Common Buzzard lifespan and lifetime reproductive success: The relative importance of food, competition, weather, habitat and individual attributes. Oecologia **133**: 474–482.

Krüger, O. (2004). The importance of competition, food, habitat, weather and phenotype for the reproduction of Buzzard *Buteo buteo. Bird Study* **51**: 125–132.

Kutner, M. H., Nachtsheim, C. and Neter, J. (2004). *Applied linear regression models*. McGraw-Hill/Irwin.

Massimino, D., Woodward, I.D., Hammond, M.J., Harris, S.J., Leech, D.I., Noble, D.G., Walker, R.H., Barimore, C., Dadam, D., Eglington, S.M., Marchant, J.H., Sullivan, M.J.P., Baillie, S.R. & Robinson, R.A. (2017a). *BirdTrends 2017: trends in numbers, breeding success and survival for UK breeding birds.* Research Report **704**. BTO, Thetford. www.bto.org/ birdtrends

Massimino, D., Johnston, A., Gillings, S., Jiguet, F. & Pearce-Higgins, J.W. (2017b). Projected reductions in climatic suitability for vulnerable British Birds. *Climatic Change* **145**: 117–130.

Massimino, D., Harris, S. J. & Cillings, S. in review. Spatial trends in the relative abundance of selected terrestrial mammals based on citizen science surveys.

Moore, N. W. (1965). Pesticides and birds–A review of the situation in Great Britain in 1965. *Bird Study* **12**: 222–252.

Moore, N. M. (1957). The past and present status of the Buzzard in the British Isles. *British Birds* **50**: 173-197.

Newson, S. E., Evans, H. E., & Gillings, S. (2015). A novel citizen science approach for large-scale standardised monitoring of bat activity and distribution, evaluated in eastern England. *Biological Conservation* **191**: 38-49.

Newton, I., Davis, P. E., & Davis, J. E. (1982). Ravens and Buzzards in relation to sheep farming and forestry in Wales. *Journal of Applied Ecology* **19**: 681–706.

Nikolov, S. Spasov, s. & Kambourova, N. (2006). Density, number and habitat use of Common Buzzards (*Buteo buteo*) wintering in the lowlands of Bulgaria. *Buteo* **15**: 39–47.

Parkin, D. and Knox, A. (2010). *The Status of Birds in Britain and Ireland*. A&C Black (Helm Country Avifaunas), London.

Perry, M. & Hollis, D. (2004). *The generation of monthly gridded datasets for a range of climate variables over the United Kingdom*. Met Office Report, Exeter, Devon.

Prytherch, R. (1997). Buzzards. BBC Wildlife 15: 22-29.

Prytherch, R. (2013). The breeding biology of the Common Buzzard. *British Birds* **106**: 264-279.

Rowland, C.S.; Morton, R.D.; Carrasco, L.; McShane, G.; O'Neil, A.W.; Wood, C.M. (2017). *Land Cover Map 2015* (vector, GB). NERC Environmental Information Data Centre. https://doi.org/10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73 Rooney, E. and Montgomery, W. I. (2013). Diet diversity of the Common Buzzard (*Buteo buteo*) in a vole-less environment. *Bird Study* **60**: 147–155..

Selås, V. (2001). Predation on reptiles and birds by the Common Buzzard *Buteo buteo* in relation to changes in its main prey, voles. *Canadian Journal of Zoology* **79**: 2086– 2093.

Sim, I. M. W. et al. (2001). Correlates of Common Buzzard *Buteo buteo* density and breeding success in the west midlands, *Bird Study* **48**: 317–329.

Sing, T., Sander O, Beerenwinkel N, Lengauer T. (2005). ROCR: visualizing classifier performance in R. *Bioinformatics* **2**: 3940–3941.

Sitters, H. P. (ed.) (1988). *Tetrad Atlas of the Breeding Birds of Devon*. Devon Bird Watching and Preservation Society.

Studenmund, A. H. (2000). *Using Econometrics: A Practical Guide*. Addison Wesley.

Swann, R. L. & Etheridge, B. (1995). A comparison of breeding success and prey of the Common Buzzard *Buteo buteo* in two areas of northern Scotland, *Bird Study* **42**: 37–43.

Taylor, K., Hudson, R. and Horne, G. (1988). Buzzard breeding distribution and abundance in britain and northern ireland in 1983, *Bird Study* **35**: 109–118.

Wuczyński, A. (2003). Abundance of Common Buzzard (*Buteo buteo*) in the Central European wintering ground in relation to the weather condition and food supply. *Buteo*, **13**: 11–20.

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. (2009). *Mixed Effects Models and Extensions in Ecology with R*. Springer, New York.

APPENDIX A

Table 1. A list of all 10-km squares where Buzzards were absent or present without breeding evidence, with the % of the square on land (as determined by LCM 2015, Rowland et al., 2017), and the total abundance of Buzzards predicted to occur in that square based on the maximum density model (PA). Squares without a prediction represent gaps in the coverage of the environmental variables included in the model, usually due to very little of the square being on land.

10-km	Status	Land	PA	10-km	n Status	Land	PA	 10-km	Status	Land	PA
NT69	present	0.62	-	SV91	present	13.03	-	 TL90	present	89.05	207
NU05	absent	4.74	-	SW65	absent	0.30	-	TQ18	present	100.00	70
NU14	present	15.53	-	SW81	absent	0.28	-	TQ26	present	100.00	97
NX90	present	7.83	17	SX03	present	0.44	-	TQ27	present	100.00	70
NX93	absent	1.42	-	SY07	present	2.47	-	TQ28	present	100.00	53
NZ25	present	100.00	189	SY38	absent	0.07	-	TQ37	present	100.00	51
NZ26	present	100.00	67	SY48	present	2.94	-	TQ38	present	100.00	46
NZ38	present	14.54	1	SY66	present	1.68	-	TQ47	absent	100.00	79
NZ39	absent	1.43	-	SY87	absent	3.25	-	TQ48	present	100.00	62
NZ41	absent	100.00	164	SZ28	absent	0.15	-	TQ78	present	98.16	130
NZ44	present	44.86	68	SZ99	present	9.20	3	TQ80	absent	3.19	-
NZ45	absent	15.54	10	TA02	present	83.31	118	TQ88	present	77.68	54
NZ46	absent	5.69	-	TA09	absent	22.27	35	TQ98	present	72.37	83
NZ52	present	81.18	65	TA14	present	100.00	321	TQ99	present	95.61	353
NZ53	absent	12.57	3	TA18	present	6.00	7	TR01	present	29.96	31
NZ62	present	31.69	47	TA26	absent	5.11	2	TR07	present	11.36	1
NZ72	absent	2.43	-	TA27	present	15.02	25	TR08	absent	24.40	-
NZ90	present	63.29	108	TA31	present	49.79	30	TR09	present	69.85	87
NZ91	absent	3.44	-	TA32	present	67.05	150	TR12	absent	0.93	-
SD16	absent	15.65	0	TA33	absent	5.57	8	TR27	absent	0.31	-
SD36	absent	41.02	-	TA40	present	9.08	-	TR33	absent	0.51	-
SE01	present	100.00	258	TA41	present	13.28	2	TR37	present	10.70	1
SE02	present	100.00	246	TA42	absent	0.12	-	TR46	absent	0.36	-
SE11	present	100.00	213	TF22	present	100.00	301	TR47	absent	0.06	-
SE13	present	100.00	107	TF33	present	100.00	234	TV49	absent	5.46	1
SS14	present	4.34	-	TF34	present	100.00	255	TV69	absent	4.90	1
ST25	absent	32.09	-	TF53	absent	6.49	-				
ST26	present	1.38	-	TF56	present	75.50	161				
SV80	present	3.08	-	TF58	absent	13.77	15				
SV81	present	7.96	-	TG24	present	11.57	13				
SV90	absent	0.47	-	TG51	present	17.45	19				

Figure 1. Map showing how population trends (blue line and shading) and modelled saturation densities (red line and shading, from the maximum density model) vary by 100-km square across England. Trends, which are all plotted to the same x-axis scale (1994–2017) and y-axis scale (0–7 birds km⁻²) are based on a simple model of annual Buzzard densities in BBS squares with 95% confidence limits shown by blue shading. Saturation densities are averaged over all 1-km squares within the 100-km square.

N

APPENDIX B

Table 1. Spreadsheet with predicted number of Buzzar	ds per 10-km square in England from the maximum
density model (A) and the mean density model (B).	

10-km	А	В												
NT60	179	86	NY24	400	203	NY77	273	135	NZ24	175	78	SD33	200	93
NT70	369	191	NY25	312	149	NY78	318	164	NZ25	129	56	SD34	101	45
NT71	563	305	NY26	209	103	NY79	258	132	NZ26	45	18	SD37	78	36
NT73	348	172	NY30	273	171	NY80	93	43	NZ27	179	81	SD38	397	209
NT80	487	268	NY31	180	121	NY81	166	81	NZ28	183	82	SD39	200	108
NT81	329	166	NY32	356	201	NY82	69	31	NZ29	227	108	SD40	256	122
NT82	631	337	NY33	315	166	NY83	107	47	NZ30	255	121	SD41	491	238
NT83	598	328	NY34	351	174	NY84	90	40	NZ31	226	105	SD42	284	127
NT84	442	227	NY35	290	134	NY85	168	79	NZ32	218	103	SD43	349	162
NT90	374	192	NY36	232	110	NY86	444	226	NZ33	193	90	SD44	437	210
NT91	317	166	NY37	532	292	NY87	304	153	NZ34	185	86	SD45	178	82
NT92	365	190	NY40	315	193	NY88	327	177	NZ35	97	41	SD46	118	53
NT93	533	274	NY41	238	145	NY89	536	286	NZ36	65	27	SD47	115	55
NT94	507	263	NY42	447	242	NY90	81	38	NZ37	50	21	SD48	295	144
NT95	292	145	NY43	365	186	NY91	123	58	NZ38	1	1	SD49	360	180
NU00	249	121	NY44	353	178	NY92	211	102	NZ40	231	110	SD50	188	83
NU01	464	239	NY45	451	220	NY93	150	72	NZ41	124	53	SD51	287	129
NU02	360	182	NY46	587	311	NY94	178	83	NZ42	171	77	SD52	162	67
NU03	517	262	NY47	498	258	NY95	195	93	NZ43	160	73	SD53	243	110
NU04	170	84	NY48	438	241	NY96	253	124	NZ44	48	20	SD54	269	125
NU10	333	162	NY50	410	237	NY97	381	193	NZ45	7	3	SD55	224	110
NU11	424	220	NY51	443	250	NY98	411	218	NZ50	172	81	SD56	431	213
NU12	394	198	NY52	382	191	NY99	413	220	NZ51	144	63	SD57	663	370
NU13	184	87	NY53	433	227	NZ00	353	179	NZ52	52	20	SD58	422	211
NU20	167	79	NY54	279	137	NZ01	212	102	NZ53	3	1	SD59	344	173
NU21	176	87	NY55	464	244	NZ02	193	93	NZ60	107	51	SD60	168	71
NU22	108	51	NY56	487	255	NZ03	181	87	NZ61	141	64	SD61	169	79
NU23	9	4	NY57	480	258	NZ04	138	66	NZ62	34	14	SD62	164	74
NX90	9	4	NY58	228	113	NZ05	220	104	NZ70	164	81	SD63	231	107
NX91	84	38	NY59	411	220	NZ06	321	155	NZ71	138	64	SD64	240	116
NX92	25	11	NY60	363	199	NZ07	288	146	NZ80	198	92	SD65	184	96
NY00	307	157	NY61	376	194	NZ08	229	112	NZ81	59	26	SD66	334	168
NY01	299	156	NY62	530	287	NZ09	362	185	NZ90	85	40	SD67	328	164
NY02	569	306	NY63	250	128	NZ10	433	224	SD08	17	8	SD68	397	213
NY03	212	102	NY64	156	76	NZ11	297	146	SD09	60	29	SD69	404	227
NY04	48	23	NY65	234	118	NZ12	213	103	SD16	0	0	SD70	102	41
NY10	251	160	NY66	372	189	NZ13	198	94	SD17	7	3	SD71	150	71
NY11	170	110	NY67	289	143	NZ14	189	91	SD18	431	246	SD72	156	71
NY12	357	200	NY68	155	75	NZ15	144	64	SD19	411	235	SD73	207	96
NY13	342	172	NY69	217	110	NZ16	169	77	SD20	10	4	SD74	232	111
NY14	393	193	NY70	330	169	NZ17	402	196	SD26	23	11	SD75	236	116
NY15	120	56	NY71	323	163	NZ18	276	134	SD27	282	133	SD76	259	129
NY16	169	85	NY72	155	79	N719	323	158	SD28	560	308	SD77	248	132
NY20	106	83	NY73	48	20	NZ20	223	104	SD29	524	362	SD78	195	104
NY21	150	104	NY74	161	74	NZ21	218	103	SD30	326	151	SD79	222	117
NY22	231	129	NY75	197	91	NZ22	166	77	SD31	277	132	SD80	84	.34
NY23	347	184	NY76	303	150	N723	183	84	SD32	60	27	SD81	123	57
				200				0.					.20	5.

10-km	А	В	0-km	А	В	10-km	А	В	10-km	А	В	10-km	A	В
SD82	174	83	5E29	232	110	SE76	320	154	SJ45	513	261	SJ92	323	153
SD83	151	71	SE30	138	58	SE77	248	118	SJ46	415	199	SJ93	325	161
SD84	223	107	SE31	200	89	SE78	228	109	SJ47	456	241	SJ94	158	73
SD85	360	181	SE32	131	55	SE79	144	69	SJ48	161	71	SJ95	314	152
SD86	212	107	SE33	104	46	SE80	477	225	SJ49	317	152	SJ96	335	169
SD87	197	101	SE34	269	139	SE81	219	98	SJ50	644	363	SJ97	248	123
SD88	228	120	SE35	253	119	SE82	202	91	SJ51	516	267	SJ98	215	100
SD89	151	74	SE36	460	224	SE83	293	134	SJ52	575	308	SJ99	104	44
SD90	99	43	SE37	304	145	SE84	281	126	SJ53	522	273	SK00	199	92
SD91	120	56	SE38	230	109	SE85	399	194	SJ54	640	364	SK01	262	123
SD92	139	67	SE39	228	110	SE86	320	151	SJ55	634	347	SK02	426	212
SD93	115	54	5E40	183	81	SE87	322	154	SJ56	543	274	SK03	505	259
SD94	206	97	SE41	203	90	SE88	206	96	SJ57	569	296	SK04	282	137
SD95	252	122	5E42	151	64	SE89	143	68	SJ58	158	69	SK05	338	170
SD96	265	137	SE43	296	141	SE90	257	118	SJ59	242	108	SK06	231	112
SD97	210	108	5E44	259	120	SE91	311	152	SJ60	425	222	SK07	248	122
SD98	205	101	SE45	302	147	SE92	138	61	SJ61	519	291	SK08	218	104
SD99	176	85	5E46	272	129	SE93	327	155	SJ62	593	316	SK09	126	59
SE00	88	42	5E47	261	125	SE94	305	142	SJ63	595	323	SK10	382	190
SE01	136	63	5E48	208	98	SE95	264	120	SJ64	622	334	SK11	300	143
SE02	133	61	5E49	202	95	SE96	343	167	SJ65	511	260	SK12	420	209
SE03	135	60	SE50	202	90	SE97	256	120	SJ66	573	297	SK13	642	353
SE04	158	73	SE51	308	143	SE98	282	109	SJ67	467	223	SK14	449	225
SE05	221	108	SE52	236	105	SE99	162	77	SJ68	385	184	SK15	304	154
SE06	144	69	SE53	255	117	SJ18	41	20	SJ69	408	193	SK16	273	136
SE07	98	46	SE54	261	123	SJ20	510	268	SJ70	460	237	SK17	263	132
SE08	233	116	SE55	204	94	SJ21	629	340	SJ71	550	331	SK18	229	114
SE09	204	100	SE56	266	126	SJ22	628	350	SJ72	622	338	SK19	138	65
SE10	173	82	SE57	224	104	SJ23	471	250	SJ73	505	270	SK20	303	144
SE11	119	51	SE58	178	85	SJ27	92	43	SJ74	424	211	SK21	467	237
SE12	128	53	SE59	137	67	SJ28	116	50	SJ75	519	263	SK22	255	116
SE13	67	27	3E60	265	118	SJ29	9	3	SJ76	398	189	SK23	511	253
SE14	153	70	SE61	271	122	SJ30	533	284	SJ77	560	278	SK24	400	195
SE15	178	87	SE62	314	144	SJ31	600	323	SJ78	485	238	SK25	253	121
SE16	148	71	SE63	233	106	SJ32	632	342	SJ79	204	93	SK26	306	141
SE17	155	75	5E64	300	137	SJ33	517	266	SJ80	444	226	SK27	338	168
SE18	202	95	SE65	181	79	SJ34	387	187	SJ81	524	284	SK28	197	93
SE19	287	142	3E66	258	120	SJ35	530	271	SJ82	580	302	SK29	139	65
SE20	202	95	SE67	285	139	SJ36	361	169	SJ83	564	302	SK30	507	263
SE21	185	85	3E68	246	117	SJ37	469	232	SJ84	113	50	SK31	441	223
SE22	94	38	SE69	143	69	SJ38	65	28	SJ85	221	100	SK32	363	171
SE23	90	38	SE70	269	124	SJ39	34	13	SJ86	513	263	SK33	115	49
SE24	233	110	SE71	223	104	SJ40	601	343	SJ87	512	253	SK34	399	190
SE25	235	113	5E72	216	98	SJ41	466	241	SJ88	134	57	SK35	385	182
SE26	252	121	SE73	246	119	SJ42	486	252	SJ89	41	17	SK36	265	126
SE27	275	134	5E74	247	118	SJ43	466	239	SJ90	289	141	SK37	146	64
SE28	215	101	SE75	261	123	SJ44	640	341	SJ91	392	196	SK38	64	27

APPENDIX B (CONT)

Table 1. (continued). Spreadsheet with predicted number of Buzzards per 10-km square in England from the maximum density model (A) and the mean density model (B).

SK3 B3 SK6	10-km	A	В												
Sk40 384 181 5Pai 385 181 5Pai 380 281 Sk41 285 174 568 284 130 SDS8 595 332 SPAi 480 247 575 450 273 Sk42 216 985 586 336 184 SDS6 332 SPAi 181 SPAi 510 223 Sk44 185 SK36 389 184 SDS6 300 172 SPAi 410 SPAi 435 SPAi 430 255 373 433 SK46 176 S64 SK34 446 220 SPAi 411 SPAi 640 340 255 373 433 546 239 SPAi 430 255 373 433 340 230 375 SPAi 430 240 255 373 543 373 543 373 543 373 543 373 543	SK39	133	58	SK86	343	157	SO56	601	322	SP03	523	267	SP50	217	97
Sicki 265 124 Sicki 286 288 288 130 SOD8 995 352 SP06 376 2972 SP16 376 9752 592 283 SK44 1183 88 SK64 138 SK64 140 SV65 370 138 SK64 245 SV55 373 138 SK44 176 970 0505 670 375 SV11 560 299 SF8 574 132 SK41 137 590 530 371 5005 610 354 SP11 500 S60 500 221 SF13 500 S60 500 272 SF15 513 240 SF6 420 SF6 420 SF6 420 SF6 420 SF6 420 SF6 420 SF6 420 </td <td>SK40</td> <td>384</td> <td>187</td> <td>SK87</td> <td>305</td> <td>140</td> <td>SO57</td> <td>580</td> <td>311</td> <td>SP04</td> <td>385</td> <td>181</td> <td>SP51</td> <td>550</td> <td>281</td>	SK40	384	187	SK87	305	140	SO57	580	311	SP04	385	181	SP51	550	281
SK42 418 198 SK93 192 SO39 157 292 SP66 576 183 SP53 502 283 SK43 126 98 SK90 333 184 SO60 300 112 SP66 191 183 SP55 373 183 SK46 176 77 SK2 446 220 SO52 733 417 SP60 97 43 SP56 414 207 SK44 175 98 566 SK94 446 216 SO61 730 385 SP11 555 279 SP57 477 277 SK44 173 98 SK06 230 177 S005 640 364 SP12 462 443 SP68 433 SK43 173 SK06 233 SK64 133 S046 530 272 SP16 413 204 SP68 433 213 S86 233 <	SK41	265	124	SK88	284	130	SO58	595	332	SP05	498	247	SP52	450	232
SK44 216 98 SK90 383 184 SO60 300 162 SP70 191 89 SP44 510 423 SK44 193 68 SK90 320 153 SP68 32 135 SP55 444 207 SK45 177 S050 460 228 SO61 779 441 SP10 660 239 555 444 207 SK47 195 68 SK95 380 206 229 120 S060 610 372 SP13 580 209 SP50 164 299 255 243 204 255 243 204 256 223 131 S060 101 S07 571 570 581 433 204 586 445 210 SK43 233 131 S070 303 S971 575 573 571 573 573 443 223	SK42	418	198	SK89	283	132	SO59	527	292	SP06	376	183	SP53	502	263
SK44 193 85 SK91 399 189 SOF1 302 175 SFN8 32 13 SFS5 373 143 SK45 176 77 SK92 446 220 SO62 773 401 SFN9 97 45 SFS5 373 143 SK47 179 S68 556 420 220 SO66 774 SFN1 556 297 575 272 717 SK48 188 668 S504 275 130 S066 611 327 SFN3 580 300 SF06 518 257 SK3 131 S508 293 131 S508 293 137 S509 301 272 SF16 413 204 SF61 414 217 SF65 433 213 S505 203 241 217 SF65 433 213 353 133 S507 303 SF17 401	SK43	216	98	SK90	383	184	SO60	300	142	SP07	191	89	SP54	510	263
5K46 176 77 SK32 446 220 SO62 739 401 SV69 97 43 SP66 414 201 SK47 195 86 SK33 499 228 SO63 784 417 SP10 602 235 SP57 220 121 SK48 158 66 SK39 300 177 SO65 640 364 SP12 464 369 SP60 S18 275 SK30 168 74 SK97 203 110 SO67 618 346 SP14 664 390 SP60 S18 274 SP63 416 210 244 SP63 416 210 245 SP63 416 210 245 SP63 413 211 S963 413 213 213 S96 519 224 SP64 420 214 SP65 512 S66 212 SP64 420 214 210	SK44	193	85	SK91	389	189	SO61	302	153	SP08	32	13	SP55	373	183
SK46 127 98 SK33 459 228 SOA3 744 417 SP10 602 356 SP58 364 323 SK47 155 668 SK93 300 177 SOG5 640 374 SK9 241 SP59 276 725 SK49 137 SK93 293 US 131 SO66 611 327 SP14 640 390 SP61 449 228 SK51 271 S13 SK98 290 304 139 SO69 S10 272 SP16 513 291 SP61 449 228 SP63 416 210 SP62 440 211 S92 377 S070 575 307 S917 367 483 212 SP64 421 SP58 421 SP14 410 S92 SP64 210 S953 231 S93 S93 S93 S93 S93 S93 S93	SK45	176	77	SK92	446	220	SO62	739	401	SP09	97	43	SP56	414	207
SkA7 195 86 SKA4 446 216 SCA4 770 385 SP11 566 299 SP84 512 SK48 158 595 595 300 177 SO65 610 364 SP12 462 241 SP59 267 125 SK3 159 SK96 235 101 SO66 611 346 SP14 643 390 SP61 449 218 SK3 287 117 SO17 592 377 SO70 575 377 SP17 364 201 SP64 421 SP63 416 210 SP63 416 210 SP63 432 215 SP63 433 215 SP63 432 216 SP63 432 216 SP64 432 SP64 </td <td>SK46</td> <td>217</td> <td>98</td> <td>SK93</td> <td>459</td> <td>228</td> <td>SO63</td> <td>784</td> <td>417</td> <td>SP10</td> <td>602</td> <td>336</td> <td>SP57</td> <td>262</td> <td>121</td>	SK46	217	98	SK93	459	228	SO63	784	417	SP10	602	336	SP57	262	121
SK48 158 6.80 SK96 3.90 177 SO65 6.40 5.44 SF12 4.42 2.41 SP39 2.57 1.25 SK49 163 74 SK97 2.03 101 SO66 611 327 SF13 5.00 SF60 5.78 2.57 SK31 2.37 131 SK97 2.03 3.04 139 SO66 5.80 3.15 SF15 4.13 2.04 SF62 4.40 2.12 SK32 2.33 1.17 SO17 5.52 3.77 SO70 5.75 3.07 SF18 6.4 2.07 SF65 4.33 2.17 S567 4.35 2.17 SF67 4.15 2.10 SK5 2.42 111 S.022 3.55 1.55 S.072 8.55 4.30 SF18 6.4 2.07 SF67 4.45 2.17 SF67 4.16 2.17 SF67 4.14 2.17	SK47	195	86	SK94	446	216	SO64	730	385	SP11	556	299	SP58	584	325
SK49 137 599 SK60 293 131 SO66 611 327 SF13 580 300 SF01 449 217 SK50 168 741 SK92 203 101 SO67 618 346 SF14 413 204 SF62 449 218 SK51 237 131 SK84 292 SO68 568 S15 SF15 413 204 SF63 416 210 SK35 254 117 SO17 592 377 SO70 575 307 SF15 416 417 SF65 433 215 SK55 242 111 SO22 355 195 SO72 452 482 SF19 166 79 SF67 415 210 SK57 472 262 SO24 644 397 5074 562 363 SF22 367 160 SF67 430 SF71 450 SF71 444 207 SF67 449 247 SF70 344 171 S503 </td <td>SK48</td> <td>158</td> <td>68</td> <td>SK95</td> <td>380</td> <td>177</td> <td>SO65</td> <td>640</td> <td>364</td> <td>SP12</td> <td>462</td> <td>241</td> <td>SP59</td> <td>267</td> <td>125</td>	SK48	158	68	SK95	380	177	SO65	640	364	SP12	462	241	SP59	267	125
SK50 168 74 SK97 203 101 SO67 618 346 SP14 644 390 SP11 449 218 SK12 237 151 SK98 269 122 SK68 315 SF15 413 204 SF62 446 223 SK34 92 440 SO18 530 544 SO70 575 307 SF18 64 277 SF65 433 213 SK35 224 111 SO12 355 195 SO72 852 422 SF18 64 277 SF65 433 213 SK55 240 111 SO22 354 140 SO75 663 552 233 210 SF67 413 204 352 159 SK63 286 177 SO25 544 405 SO77 502 663 SF23 533 201 SF71 443 203	SK49	137	59	SK96	293	131	SO66	611	327	SP13	580	300	SP60	518	257
SK31 287 131 SK98 269 122 SO68 568 315 SP15 413 204 SP62 406 223 SK32 339 117 SK98 304 139 SO69 510 272 SP16 513 258 SP63 446 211 130 SK35 242 111 SO17 527 S070 S75 S070 S76 SP17 546 79 SP66 433 213 SK55 202 111 SO22 355 195 SO74 512 260 SP10 446 277 SP66 433 201 SP68 294 440 202 SP67 441 203 SP17 444 203 SP3 387 190 SP68 294 490 245 SP71 444 203 SP68 292 563 393 SP73 444 203 SP68 SP24 490 245 SP74 444 203 SP66 393 SP73 576 377 SP64 477 <td>SK50</td> <td>168</td> <td>74</td> <td>SK97</td> <td>203</td> <td>101</td> <td>SO67</td> <td>618</td> <td>346</td> <td>SP14</td> <td>684</td> <td>390</td> <td>SP61</td> <td>449</td> <td>218</td>	SK50	168	74	SK97	203	101	SO67	618	346	SP14	684	390	SP61	449	218
SKS2 339 157 SK99 304 139 SO69 510 272 SP16 513 258 SP63 210 230 SK34 92 40 SO18 S50 364 SO71 750 374 SP18 64 72 SP66 453 213 SK35 212 111 SO22 355 195 SO72 855 402 SP19 166 79 SP66 453 213 SK54 920 91 SO23 442 252 SO73 662 463 SP20 454 217 SP67 415 210 SK54 493 SO25 594 340 SO75 660 365 SP23 593 281 SP70 432 147 230 S076 648 365 SP24 593 281 SP37 597 349 170 SK61 378 179 S028 607 417	SK51	287	131	SK98	269	122	SO68	568	315	SP15	413	204	SP62	406	223
SK33 2.54 117 SO17 5.92 3.77 SO70 5.75 3.07 SP17 3.67 182 SP64 2.71 130 SK54 9.2 4.00 SO18 5.53 155 SO72 895 482 SP18 66 79 SP66 543 210 SK55 2.00 91 SO23 442 2.32 SO73 692 403 SP20 434 217 SP66 592 255 SK57 433 2.62 SO24 674 377 SO75 666 565 SP21 553 2.81 150 SS75 434 207 SK62 2.86 SP24 490 2.43 SP70 432 160 SK61 378 179 SO26 S56 333 SO76 648 655 SP23 511 S77 449 243 SP71 444 203 SK62 2.96 141 S029 666 444 SO79 508 2.98 SP25 649 2.75 7.469 2.76	SK52	339	157	SK99	304	139	SO69	510	272	SP16	513	258	SP63	416	210
SK54 92 40 S018 530 564 SO71 760 394 SP18 64 27 SP65 433 213 SK55 242 1111 SO22 355 195 SO72 855 482 SP19 166 79 SP66 559 226 SK57 433 262 SO24 644 397 SO74 512 260 SP21 566 252 SP68 232 199 SK58 288 137 SO25 594 340 SO75 666 365 SP23 553 218 SP70 332 169 SK60 188 93 SO77 477 206 SP24 490 243 SP70 332 160 SK61 378 179 SO28 671 417 SO78 558 298 SP25 659 372 SP73 476 225 SK63 259 141 SO29 666 350 SO80 357 SP26 402 155 164	SK53	254	117	SO17	592	377	SO70	575	307	SP17	367	182	SP64	271	130
SKS5 242 111 SO22 355 195 SO72 855 482 SP19 166 79 SP66 559 285 SK56 200 91 SO23 442 232 SO73 662 403 SP20 654 217 SP67 415 210 SK57 493 262 SO24 674 397 SO76 666 365 SP21 S06 253 SP70 GS02 SP70 GS02 SP70 GS02 SP71 444 205 SK60 198 93 SO27 417 540 SO77 S20 268 SP24 490 245 SP71 444 205 SK61 378 179 SO28 671 417 SO78 528 298 SP24 490 245 SP71 444 205 SK62 259 119 SO28 671 417 SO78 620 303 S77 SP26 402 195 SP73 444 457 268 SP74 457 </td <td>SK54</td> <td>92</td> <td>40</td> <td>SO18</td> <td>530</td> <td>364</td> <td>SO71</td> <td>760</td> <td>394</td> <td>SP18</td> <td>64</td> <td>27</td> <td>SP65</td> <td>433</td> <td>213</td>	SK54	92	40	SO18	530	364	SO71	760	394	SP18	64	27	SP65	433	213
SK66 200 91 SO23 442 232 SO73 692 403 SP20 434 217 SP67 445 210 SK7 443 Sc2 SO24 674 397 SO74 512 260 SP21 506 252 SP68 244 142 SK36 283 115 SO25 594 340 SO76 648 365 SP22 357 281 SP70 352 166 SK60 198 93 SO27 417 340 SO77 520 268 SP44 490 245 SP71 414 203 SK61 378 179 SO26 6671 417 SO78 S88 298 SP25 659 372 SP73 445 226 SK62 259 119 SO32 609 335 SO80 390 189 SP27 415 206 SP74 457 226 SK64 267 S035 636 SO85 A99 204 SP30 564 <td>SK55</td> <td>242</td> <td>111</td> <td>SO22</td> <td>355</td> <td>195</td> <td>S072</td> <td>855</td> <td>482</td> <td>SP19</td> <td>166</td> <td>79</td> <td>SP66</td> <td>559</td> <td>285</td>	SK55	242	111	SO22	355	195	S072	855	482	SP19	166	79	SP66	559	285
SK57 493 262 SO24 674 397 SO74 512 260 SP21 506 252 SP68 294 142 SK58 288 137 SO25 594 340 SO75 666 365 SP22 387 190 SP69 332 169 SK60 198 93 SO27 417 340 SO76 628 SP24 490 243 SP71 414 203 SK61 378 179 SO28 671 417 SO78 558 298 SP24 440 243 SP71 446 239 SK61 378 179 SO28 666 414 SO79 603 337 SP26 402 195 SP73 446 239 SK64 259 191 SO33 SO35 636 366 360 176 SP28 229 SP77 442 239 SK67 437 208 S607 670 391 240 SP30 564 293 SP77 442 <td>SK56</td> <td>200</td> <td>91</td> <td>SO23</td> <td>442</td> <td>232</td> <td>S073</td> <td>692</td> <td>403</td> <td>SP20</td> <td>434</td> <td>217</td> <td>SP67</td> <td>415</td> <td>210</td>	SK56	200	91	SO23	442	232	S073	692	403	SP20	434	217	SP67	415	210
SK88 288 137 SO25 594 340 SO75 686 365 SP22 387 190 SP69 332 159 SK99 253 115 SO26 556 393 SO76 648 355 SP23 553 281 SP70 332 160 SK60 198 33 SO27 417 340 SO77 520 268 SP24 490 243 SP71 444 239 SK61 378 179 SO28 671 417 SO78 558 238 SP25 659 372 SP73 476 239 SK62 259 119 SO32 669 335 SO80 390 189 SP27 415 206 SP74 457 226 SK64 287 130 SO33 703 394 SO81 360 176 SP38 429 243 SP77 442 239 SK66 445 256 SO37 705 408 SO84 420 SP33 <td>SK57</td> <td>493</td> <td>262</td> <td>SO24</td> <td>674</td> <td>397</td> <td>SO74</td> <td>512</td> <td>260</td> <td>SP21</td> <td>506</td> <td>252</td> <td>SP68</td> <td>294</td> <td>142</td>	SK57	493	262	SO24	674	397	SO74	512	260	SP21	506	252	SP68	294	142
SK99 253 115 SO26 556 393 SO76 648 365 SP23 553 281 SP70 332 160 SK60 198 93 SO27 417 340 SO77 520 2268 SP24 490 245 SP71 414 203 SK61 378 179 SO28 671 417 SO78 558 298 SP25 6402 372 SP73 476 239 SK62 259 119 SO32 609 335 SO80 390 189 SP27 415 206 SP74 476 226 SK64 287 130 SO33 703 394 SO81 360 176 SP28 529 269 SP76 218 1060 SK67 476 233 SO35 666 396 SO84 490 240 SP30 564 293 SP77 422 239 SK67 477 208 SO35 666 396 SO84 404 SP31	SK58	288	137	SO25	594	340	SO75	686	365	SP22	387	190	SP69	332	159
SK60 198 93 SO27 417 340 SO77 520 268 SP24 490 243 SP71 414 203 SK61 378 179 SO28 671 417 SO78 558 298 SP25 669 372 SP72 349 172 SK62 296 141 SO29 666 414 SO79 603 337 SP26 402 195 SP73 446 226 SK64 259 119 SO33 703 394 SO80 360 176 SP28 529 269 SP75 345 164 SK64 476 233 SO35 636 365 SO83 489 240 SP30 564 295 SP77 482 239 SK67 457 208 SO36 666 336 SO35 411 213 SP78 274 133 SK68 419 246	SK59	253	115	SO26	556	393	SO76	648	365	SP23	553	281	SP70	332	160
SK61 378 179 SO28 671 417 SO78 558 298 SP25 659 372 SP72 349 172 SK62 296 141 SO29 666 414 SO79 603 337 SP26 402 195 SP73 476 239 SK63 259 119 SO32 609 335 SO80 390 189 SP27 415 206 SP74 476 236 SK65 354 171 SO33 703 394 SO81 360 176 SP28 529 269 SP75 345 164 SK65 354 171 SO35 636 365 SO83 489 240 SP30 564 293 SP77 482 239 SK66 476 233 SO35 636 365 SO83 429 240 SP31 273 128 SP78 241 133 SK69 319 145 SO37 705 408 SO49 242 SP33 </td <td>SK60</td> <td>198</td> <td>93</td> <td>SO27</td> <td>417</td> <td>340</td> <td>S077</td> <td>520</td> <td>268</td> <td>SP24</td> <td>490</td> <td>243</td> <td>SP71</td> <td>414</td> <td>203</td>	SK60	198	93	SO27	417	340	S077	520	268	SP24	490	243	SP71	414	203
SK62 296 141 SO29 666 414 SO79 603 337 SP26 402 195 SP73 476 239 SK63 259 119 SO32 609 335 SO80 390 189 SP27 415 206 SP74 457 226 SK64 287 130 SO33 703 394 SO81 360 176 SP28 529 269 SP75 345 164 SK65 354 171 SO34 517 273 S082 602 300 SP29 432 213 SP77 482 229 SK67 437 208 SO35 666 396 SO84 449 444 SP33 417 213 SP79 373 188 SK69 319 145 SO38 667 449 SO86 603 316 SP33 411 223 SP81 287 135 SK70 374 188 SO39 676 383 SO87 276 129 <td>SK61</td> <td>378</td> <td>179</td> <td>SO28</td> <td>671</td> <td>417</td> <td>SO78</td> <td>558</td> <td>298</td> <td>SP25</td> <td>659</td> <td>372</td> <td>SP72</td> <td>349</td> <td>172</td>	SK61	378	179	SO28	671	417	SO78	558	298	SP25	659	372	SP72	349	172
SK63 259 119 SO32 609 335 SO80 390 189 SP27 415 206 SP74 457 226 SK64 287 130 SO33 703 394 SO81 360 176 SP28 529 269 SP75 345 164 SK65 354 171 SO34 517 273 SO82 602 300 SP29 432 213 SP76 218 100 SK66 476 233 SO35 636 365 SO84 449 240 SP30 564 293 SP77 482 239 SK67 437 208 SO37 705 408 SO85 429 204 SP32 411 213 SP78 221 108 SK70 374 188 SO39 676 383 SO67 276 129 SP34 541 278 SP81 287 128 SP42 453 221 108 SK7 374 188 SO39 676 383 SO67 276 <td>SK62</td> <td>296</td> <td>141</td> <td>SO29</td> <td>666</td> <td>414</td> <td>SO79</td> <td>603</td> <td>337</td> <td>SP26</td> <td>402</td> <td>195</td> <td>SP73</td> <td>476</td> <td>239</td>	SK62	296	141	SO29	666	414	SO79	603	337	SP26	402	195	SP73	476	239
SK64 287 130 SO33 703 394 SO81 360 176 SP28 529 269 SP75 345 164 SK65 354 171 SO34 517 273 SO82 602 300 SP29 432 213 SP76 218 100 SK66 476 233 SO35 636 365 SO83 489 240 SP30 564 293 SP77 482 229 SK67 437 208 SO36 666 396 SO85 429 204 SP31 273 128 SP79 373 188 SK69 319 145 SO38 667 409 SO66 603 316 SP33 441 223 SP80 231 108 SK70 374 188 SO39 676 383 SO87 276 129 SP34 541 278 588 443 233 SP82 453 221 SK72 324 156 SO41 675 360 <td>SK63</td> <td>259</td> <td>119</td> <td>SO32</td> <td>609</td> <td>335</td> <td>SO80</td> <td>390</td> <td>189</td> <td>SP27</td> <td>415</td> <td>206</td> <td>SP74</td> <td>457</td> <td>226</td>	SK63	259	119	SO32	609	335	SO80	390	189	SP27	415	206	SP74	457	226
SK65 354 171 SO34 517 273 SO82 602 300 SP29 432 213 SP76 218 100 SK66 476 233 SO35 636 365 SO83 489 240 SP30 564 293 SP77 482 239 SK67 437 208 SO36 666 396 SO84 740 404 SP31 273 128 SP78 274 133 SK68 469 226 SO37 705 408 SO85 429 204 SP32 417 213 SP79 373 181 SK69 319 145 SO38 667 409 SO86 603 316 SP33 441 223 SP80 231 108 SK70 374 188 SO39 676 383 SO87 276 129 SP34 441 23 SP83 443 215 SP83 148 666 SK72 328 154 SO43 617 332 <td>SK64</td> <td>287</td> <td>130</td> <td>SO33</td> <td>703</td> <td>394</td> <td>SO81</td> <td>360</td> <td>176</td> <td>SP28</td> <td>529</td> <td>269</td> <td>SP75</td> <td>345</td> <td>164</td>	SK64	287	130	SO33	703	394	SO81	360	176	SP28	529	269	SP75	345	164
SK66 476 233 SO35 636 365 SO83 489 240 SP30 564 293 SP77 482 239 SK67 437 208 SO36 666 396 SO84 740 404 SP31 273 128 SP78 274 133 SK68 469 226 SO37 705 408 SO85 429 204 SP32 417 213 SP79 373 181 SK69 319 145 SO38 667 409 SO86 603 316 SP33 441 223 SP80 231 108 SK70 374 188 SO39 676 383 SO87 276 129 SP34 544 233 SP81 287 136 SK71 261 125 SO41 675 360 S049 452 299 577 267 127 SP84 389 109	SK65	354	171	SO34	517	273	SO82	602	300	SP29	432	213	SP76	218	100
SK67 437 208 SO36 666 396 SO84 740 404 SP31 273 128 SP78 274 133 SK68 469 226 SO37 705 408 SO85 429 204 SP32 417 213 SP79 373 181 SK69 319 145 SO38 667 409 SO86 603 316 SP33 441 223 SP80 231 108 SK70 374 188 SO39 676 383 SO87 276 129 SP34 541 278 SP81 287 136 SK71 261 125 SO41 675 360 SO88 354 176 SP35 464 233 SP82 453 221 SK72 328 154 SO43 617 332 SO90 465 249 SP37 267 127 SP84 389 190 SK75 363 168 SO43 578 301 SP37 267 127 SP85 </td <td>SK66</td> <td>476</td> <td>233</td> <td>SO35</td> <td>636</td> <td>365</td> <td>SO83</td> <td>489</td> <td>240</td> <td>SP30</td> <td>564</td> <td>293</td> <td>SP77</td> <td>482</td> <td>239</td>	SK66	476	233	SO35	636	365	SO83	489	240	SP30	564	293	SP77	482	239
SK68 469 226 S037 705 408 SO85 429 204 SP32 417 213 SP79 373 181 SK69 319 145 SO38 667 409 SO86 603 316 SP33 441 223 SP80 231 108 SK70 374 188 SO39 676 383 SO87 276 129 SP34 541 278 SP81 287 136 SK71 261 125 SO41 675 360 SO88 354 176 SP35 464 233 SP82 453 221 SK72 324 156 SO42 670 399 SO89 384 192 SP36 433 215 SP83 148 666 SK73 328 154 SO43 617 332 SO90 465 249 SP37 267 127 SP84 389 190	SK67	437	208	SO36	666	396	SO84	740	404	SP31	273	128	SP78	274	133
SK69 319 145 SO38 667 409 SO86 603 316 SP33 441 223 SP80 231 108 SK70 374 188 SO39 676 383 SO87 276 129 SP34 541 278 SP81 287 136 SK71 261 125 SO41 675 360 SO88 354 176 SP35 464 233 SP82 453 221 SK72 324 156 SO42 670 399 SO89 384 192 SP36 433 215 SP83 148 66 SK73 328 154 SO43 617 332 SO90 465 249 SP37 267 127 SP84 389 190 SK74 423 202 SO44 578 308 SO91 496 261 SP38 244 112 SP85 555 292 SK75 363 168 SO45 638 378 SO92 316 SP40 421 206 <td>SK68</td> <td>469</td> <td>226</td> <td>SO37</td> <td>705</td> <td>408</td> <td>SO85</td> <td>429</td> <td>204</td> <td>SP32</td> <td>417</td> <td>213</td> <td>SP79</td> <td>373</td> <td>181</td>	SK68	469	226	SO37	705	408	SO85	429	204	SP32	417	213	SP79	373	181
SK70 374 188 SO39 676 383 SO87 276 129 SP34 541 278 SP81 287 136 SK71 261 125 SO41 675 360 SO88 354 176 SP35 464 233 SP82 453 221 SK72 324 156 SO42 670 399 SO89 384 192 SP36 433 215 SP83 148 66 SK73 328 154 SO43 617 332 SO90 465 249 SP37 267 127 SP84 389 190 SK74 423 202 SO44 578 308 SO91 496 261 SP38 244 112 SP85 555 292 SK75 363 168 SO45 638 378 SO92 376 185 SP39 395 196 SP86 357 171 SK76 370 173 SO46 736 414 SO93 605 310 <td>SK69</td> <td>319</td> <td>145</td> <td>SO38</td> <td>667</td> <td>409</td> <td>SO86</td> <td>603</td> <td>316</td> <td>SP33</td> <td>441</td> <td>223</td> <td>SP80</td> <td>231</td> <td>108</td>	SK69	319	145	SO38	667	409	SO86	603	316	SP33	441	223	SP80	231	108
SK71261125SO41675360SO88354176SP35464233SP82453221SK72324156SO42670399SO89384192SP36433215SP8314866SK73328154SO43617332SO90465249SP37267127SP84389190SK74423202SO44578308SO91496261SP38244112SP85555292SK75363168SO45638378SO92376185SP39395196SP86357171SK76370173SO46736414SO93605310SP40421206SP87303142SK77341159SO47685402SO94580294SP41344166SP88236110SK78351165SO48683384SO95442218SP42586308SP89327156SK79354165SO49456249SO96508249SP43541276SP90284133SK80254121SO50411214SO97317153SP44355177SP91401197SK81420205SO51429215SO9882 </td <td>SK70</td> <td>374</td> <td>188</td> <td>SO39</td> <td>676</td> <td>383</td> <td>SO87</td> <td>276</td> <td>129</td> <td>SP34</td> <td>541</td> <td>278</td> <td>SP81</td> <td>287</td> <td>136</td>	SK70	374	188	SO39	676	383	SO87	276	129	SP34	541	278	SP81	287	136
SK72 324 156 SO42 670 399 SO89 384 192 SP36 433 215 SP83 148 66 SK73 328 154 SO43 617 332 SO90 465 249 SP37 267 127 SP84 389 190 SK74 423 202 SO44 578 308 SO91 496 261 SP38 244 112 SP85 555 292 SK75 363 168 SO45 638 378 SO92 376 185 SP39 395 196 SP86 357 171 SK76 370 173 SO46 736 414 SO93 605 310 SP40 421 206 SP87 303 142 SK77 341 159 SO47 685 402 SO94 580 294 SP41 344 166 SP88 236 110 SK78 351 165 SO48 683 384 SO95 442 218 <td>SK71</td> <td>261</td> <td>125</td> <td>SO41</td> <td>675</td> <td>360</td> <td>SO88</td> <td>354</td> <td>176</td> <td>SP35</td> <td>464</td> <td>233</td> <td>SP82</td> <td>453</td> <td>221</td>	SK71	261	125	SO41	675	360	SO88	354	176	SP35	464	233	SP82	453	221
SK73328154SO43617332SO90465249SP37267127SP84389190SK74423202SO44578308SO91496261SP38244112SP85555292SK75363168SO45638378SO92376185SP39395196SP86357171SK76370173SO46736414SO93605310SP40421206SP87303142SK77341159SO47685402SO94580294SP41344166SP88236110SK78351165SO48683384SO95442218SP42586308SP89327156SK79354165SO49456249SO96508249SP43541276SP90284133SK80254121SO50411214SO97317153SP44355177SP91401197SK81420205SO51429215SO988236SP45528272SP92341162SK82357172SO52720409SO993916SP46425207SP93362174SK83294134SO53517267SP00566 <td>SK72</td> <td>324</td> <td>156</td> <td>SO42</td> <td>670</td> <td>399</td> <td>SO89</td> <td>384</td> <td>192</td> <td>SP36</td> <td>433</td> <td>215</td> <td>SP83</td> <td>148</td> <td>66</td>	SK72	324	156	SO42	670	399	SO89	384	192	SP36	433	215	SP83	148	66
SK74423202SO44578308SO91496261SP38244112SP85555292SK75363168SO45638378SO92376185SP39395196SP86357171SK76370173SO46736414SO93605310SP40421206SP87303142SK77341159SO47685402SO94580294SP41344166SP88236110SK78351165SO48683384SO95442218SP42586308SP89327156SK79354165SO49456249SO96508249SP43541276SP90284133SK80254121SO50411214SO97317153SP44355177SP91401197SK81420205SO51429215SO988236SP45528272SP92341162SK82357172SO52720409SO993916SP46425207SP93362174SK83294134SO53517267SP00566310SP47272130SP44509255SK84505244SO54752433SP01489 <td>SK73</td> <td>328</td> <td>154</td> <td>SO43</td> <td>617</td> <td>332</td> <td>SO90</td> <td>465</td> <td>249</td> <td>SP37</td> <td>267</td> <td>127</td> <td>SP84</td> <td>389</td> <td>190</td>	SK73	328	154	SO43	617	332	SO90	465	249	SP37	267	127	SP84	389	190
SK75363168SO45638378SO92376185SP39395196SP86357171SK76370173SO46736414SO93605310SP40421206SP87303142SK77341159SO47685402SO94580294SP41344166SP88236110SK78351165SO48683384SO95442218SP42586308SP89327156SK79354165SO49456249SO96508249SP43541276SP90284133SK80254121SO50411214SO97317153SP44355177SP91401197SK81420205SO51429215SO988236SP45528272SP92341162SK82357172SO52720409SO993916SP46425207SP93362174SK83294134SO53517267SP00566310SP47272130SP94509255SK84505244SO54752433SP01489256SP48402198SP55443215SK85294136SO55570312SP02537 <td>SK74</td> <td>423</td> <td>202</td> <td>SO44</td> <td>578</td> <td>308</td> <td>SO91</td> <td>496</td> <td>261</td> <td>SP38</td> <td>244</td> <td>112</td> <td>SP85</td> <td>555</td> <td>292</td>	SK74	423	202	SO44	578	308	SO91	496	261	SP38	244	112	SP85	555	292
SK76370173SO46736414SO93605310SP40421206SP87303142SK77341159SO47685402SO94580294SP41344166SP88236110SK78351165SO48683384SO95442218SP42586308SP89327156SK79354165SO49456249SO96508249SP43541276SP90284133SK80254121SO50411214SO97317153SP44355177SP91401197SK81420205SO51429215SO988236SP45528272SP92341162SK82357172SO52720409SO993916SP46425207SP93362174SK83294134SO53517267SP00566310SP47272130SP94509255SK84505244SO54752433SP01489256SP48402198SP95443215SK85294136SO55570312SP02537290SP49329157SP96282129	SK75	363	168	SO45	638	378	SO92	376	185	SP39	395	196	SP86	357	171
SK77 341 159 SO47 685 402 SO94 580 294 SP41 344 166 SP88 236 110 SK78 351 165 SO48 683 384 SO95 442 218 SP42 586 308 SP89 327 156 SK79 354 165 SO49 456 249 SO96 508 249 SP43 541 276 SP90 284 133 SK80 254 121 SO50 411 214 SO97 317 153 SP44 355 177 SP91 401 197 SK81 420 205 SO51 429 215 SO98 82 36 SP45 528 272 SP92 341 162 SK82 357 172 SO52 720 409 SO99 39 16 SP46 425 207 SP93 362 174 SK83 294 134 SO53 517 267 SP00 566 310	SK76	370	173	SO46	736	414	SO93	605	310	SP40	421	206	SP87	303	142
SK78 351 165 SO48 683 384 SO95 442 218 SP42 586 308 SP89 327 156 SK79 354 165 SO49 456 249 SO96 508 249 SP43 541 276 SP90 284 133 SK80 254 121 SO50 411 214 SO97 317 153 SP44 355 177 SP91 401 197 SK81 420 205 SO51 429 215 SO98 82 36 SP45 528 272 SP92 341 162 SK82 357 172 SO52 720 409 SO99 39 16 SP46 425 207 SP93 362 174 SK83 294 134 SO53 517 267 SP00 566 310 SP47 272 130 SP94 509 255 SK84 505 244 SO54 752 433 SP01 489 256	SK77	341	159	SO47	685	402	SO94	580	294	SP41	344	166	SP88	236	110
SK79354165SO49456249SO96508249SP43541276SP90284133SK80254121SO50411214SO97317153SP44355177SP91401197SK81420205SO51429215SO988236SP45528272SP92341162SK82357172SO52720409SO993916SP46425207SP93362174SK83294134SO53517267SP00566310SP47272130SP94509255SK84505244SO54752433SP01489256SP48402198SP55443215SK85294136SO55570312SP02537290SP49329157SP66282129	SK78	351	165	SO48	683	384	SO95	442	218	SP42	586	308	SP89	327	156
SK80254121SO50411214SO97317153SP44355177SP91401197SK81420205SO51429215SO988236SP45528272SP92341162SK82357172SO52720409SO993916SP46425207SP93362174SK83294134SO53517267SP00566310SP47272130SP94509255SK84505244SO54752433SP01489256SP48402198SP95443215SK85294136SO55570312SP02537290SP49329157SP66282129	SK79	354	165	SO49	456	249	SO96	508	249	SP43	541	276	SP90	284	133
SK81420205SO51429215SO988236SP45528272SP92341162SK82357172SO52720409SO993916SP46425207SP93362174SK83294134SO53517267SP00566310SP47272130SP94509255SK84505244SO54752433SP01489256SP48402198SP95443215SK85294136SO55570312SP02537290SP49329157SP96282129	SK80	254	121	SO50	411	214	SO97	317	153	SP44	355	177	SP91	401	197
SK82 357 172 SO52 720 409 SO99 39 16 SP46 425 207 SP93 362 174 SK83 294 134 SO53 517 267 SP00 566 310 SP47 272 130 SP94 509 255 SK84 505 244 SO54 752 433 SP01 489 256 SP48 402 198 SP95 443 215 SK85 294 136 SO55 570 312 SP02 537 290 SP49 329 157 SP96 282 129	SK81	420	205	SO51	429	215	SO98	82	36	SP45	528	272	SP92	341	162
SK83 294 134 SO53 517 267 SP00 566 310 SP47 272 130 SP94 509 255 SK84 505 244 SO54 752 433 SP01 489 256 SP48 402 198 SP95 443 215 SK85 294 136 SO55 570 312 SP02 537 290 SP49 329 157 SP96 282 129	SK82	357	172	SO52	720	409	SO99	39	16	SP46	425	207	SP93	362	174
SK84 505 244 SO54 752 433 SP01 489 256 SP48 402 198 SP95 443 215 SK85 294 136 SO55 570 312 SP02 537 290 SP49 329 157 SP96 282 129	SK83	294	134	SO53	517	267	SP00	566	310	SP47	272	130	SP94	509	255
SK85 294 136 SO55 570 312 SP02 537 290 SP49 329 157 SP96 282 129	SK84	505	244	SO54	752	433	SP01	489	256	SP48	402	198	SP95	443	215
	SK85	294	136	SO55	570	312	SP02	537	290	SP49	329	157	SP96	282	129

10-km	А	В	10-km	А	В	10-km	А	В	10-km	А	В	10-km	А	В
SP97	269	123	ST13	628	356	ST73	385	199	SU20	307	153	SU67	255	119
SP98	293	140	ST14	261	161	ST74	398	200	SU21	255	123	SU68	334	162
SP99	461	234	ST16	20	9	ST75	583	301	SU22	471	228	SU69	438	221
SS20	481	240	ST20	517	270	ST76	452	225	SU23	705	395	SU70	134	59
SS21	316	158	ST21	558	304	ST77	644	355	SU24	626	332	SU71	511	257
SS22	202	101	ST22	569	291	ST78	357	177	SU25	546	289	SU72	358	171
SS30	508	263	ST23	665	357	ST79	499	251	SU26	436	228	SU73	357	173
SS31	437	226	ST24	196	97	ST80	554	296	SU27	558	363	SU74	407	205
SS32	130	64	ST30	586	301	ST81	571	303	SU28	637	363	SU75	306	144
SS40	423	213	ST31	717	383	ST82	522	274	SU29	393	197	SU76	384	183
SS41	464	235	ST32	735	383	ST83	640	350	SU30	236	110	SU77	209	92
SS42	549	278	ST33	729	383	ST84	390	196	SU31	248	111	SU78	431	213
SS43	129	61	ST34	620	321	ST85	447	220	SU32	500	247	SU79	457	230
SS44	111	55	ST35	449	221	ST86	606	322	SU33	416	206	SU80	350	177
SS50	643	340	ST36	136	63	ST87	489	252	SU34	339	160	SU81	393	190
SS51	388	186	ST40	718	408	ST88	480	247	SU35	619	333	SU82	256	117
SS52	476	236	ST41	746	400	ST89	594	316	SU36	462	234	SU83	153	69
SS53	578	303	ST42	683	357	ST90	720	398	SU37	552	308	SU84	177	79
SS54	353	183	ST43	695	368	ST91	659	359	SU38	523	275	SU85	82	35
SS60	509	263	ST44	686	362	ST92	621	336	SU39	478	239	SU86	95	41
SS61	568	297	ST45	477	244	ST93	573	304	SU40	139	60	SU87	403	189
SS62	573	290	ST46	498	247	ST94	742	427	SU41	107	44	SU88	370	172
SS63	584	321	ST47	268	138	ST95	667	364	SU42	333	155	SU89	299	139
SS64	421	235	ST48	213	104	ST96	388	191	SU43	552	281	SU90	373	172
SS70	477	245	ST50	516	273	ST97	361	178	SU44	437	215	SU91	388	196
SS71	576	377	ST51	466	237	ST98	618	322	SU45	639	348	SU92	369	179
SS72	655	362	ST52	705	375	ST99	423	216	SU46	287	134	SU93	294	142
SS73	451	242	ST53	552	283	SU00	492	251	SU47	506	276	SU94	233	106
SS74	421	232	ST54	552	284	SU01	554	281	SU48	547	289	SU95	138	60
SS80	645	347	ST55	436	227	SU02	718	419	SU49	357	173	SU96	163	69
SS81	478	251	ST56	489	252	SU03	656	356	SU50	122	52	SU97	239	105
SS82	417	217	ST57	145	65	SU04	699	393	SU51	451	215	SU98	251	113
SS83	490	256	ST58	273	133	SU05	608	341	SU52	534	274	SU99	227	106
SS84	266	136	ST59	338	170	SU06	480	250	SU53	514	257	SW32	156	81
\$\$90	756	422	ST60	611	327	SU07	463	240	SU54	429	215	SW33	81	41
SS91	583	311	ST61	610	327	SU08	380	190	SU55	619	338	SW42	185	91
SS92	501	262	ST62	676	373	SU09	493	252	SU56	397	193	SW43	448	245
SS93	537	296	ST63	730	425	SU10	313	145	SU57	560	298	SW52	34	16
SS94	357	194	ST64	573	320	SU11	426	209	SU58	582	309	SW53	541	295
ST00	562	289	ST65	543	284	SU12	539	269	SU59	348	165	SW54	18	8
ST01	659	360	ST66	471	232	SU13	629	355	SU60	103	45	SW61	34	16
ST02	560	296	ST67	157	69	SU14	597	325	SU61	448	219	SW62	390	201
ST03	573	310	ST68	512	258	SU15	611	329	SU62	480	238	SW63	463	231
ST04	177	89	ST69	523	266	SU16	529	279	SU63	410	206	SW64	166	77
ST10	532	278	ST70	683	408	SU17	483	256	SU64	458	234	SW71	116	61
ST 11	527	279	ST71	615	326	SU18	175	80	SU65	345	164	SW72	270	127
ST12	557	283	ST72	615	330	SU19	457	233	SU66	320	151	SW73	551	292
	337	200	0.72	015	000	5515	,	200				2	20.	202

10-km	А	В	10-km	А	В	10-km	А	В	10-km	А	В	10-km	А	В
SW74	421	206	SX67	541	310	SZ38	85	46	TF03	547	270	TF50	273	119
SW75	308	156	SX68	339	183	SZ39	152	69	TF04	327	150	TF51	248	107
SW83	133	66	SX69	369	187	SZ47	18	11	TF05	337	153	TF52	128	55
SW84	446	219	SX73	148	74	SZ48	274	162	TF06	332	150	TF55	45	19
SW85	513	256	SX74	655	330	SZ49	100	50	TF07	253	113	TF56	149	62
SW86	242	114	SX75	584	299	SZ57	64	44	TF08	291	132	TF57	138	58
SW87	91	41	SX76	606	315	\$758	315	217	TF09	287	133	TE58	15	6
SW93	22	11	SX77	551	295	\$759	70	37	TF10	243	109	TF60	339	155
SMAA	715	387	SX78	484	255	5255	39	25	TF11	215	116	TF61	243	107
SW/95	330	163	5779	521	255	5260	7	23	TF12	370	174	TF62	233	103
SMOE	500	250	CVOZ	11	270	SZ05	11	5	TF1Z	376	177	TEGZ	177	56
SW90	262	120	CAVC 2V07	11	140	5275	124	56	TE1/	367	166	TE64	155	50
5004	255	120	CV0F	202	700	5209	124	1	TE15	507	160	TE70	247	107
5X04 6X05	94	48	CAVC	547	308	3299	242	100	TELC	207	100	TE71	245 777	107
SX05	569	184	2702	540	262	TAOL	242	109		295	133		200	100
200	5/4	304	5X87	568	299	TAOD	291	155	1F1/	291	135	1F72 TF77	299	129
SX07	/50	436	2888	402	203	TA02	94	39	IF18	246	113	IF/3	312	134
SX08	234	112	SX89	427	213	IA03	178	77	IF 19	297	140	IF/4	120	51
SX15	512	261	SX95	102	55	IA04	293	138	1F20	312	142	11-80	348	167
SX16	653	377	SX96	29	14	TA05	259	120	11-21	305	138	11-81	345	153
SX17	639	352	SX97	177	86	TA06	262	121	TF22	214	93	TF82	344	154
SX18	411	216	SX98	425	212	TA07	333	154	TF23	241	107	TF83	524	230
SX19	225	111	SX99	450	225	TA08	123	54	TF24	345	155	TF84	153	65
SX25	410	208	SY08	231	108	TA09	25	10	TF25	344	155	TF90	288	131
SX26	648	343	SY09	490	242	TA10	355	165	TF26	241	109	TF91	249	115
SX27	711	411	SY18	64	31	TA11	204	90	TF27	257	117	TF92	248	109
SX28	429	215	SY19	431	214	TA12	87	38	TF28	323	151	TF93	440	195
SX29	472	237	SY28	19	13	TA13	223	99	TF29	358	161	TF94	116	49
SX35	279	140	SY29	750	414	TA14	231	103	TF30	291	130	TG00	269	119
SX36	728	395	SY39	318	157	TA15	199	90	TF31	301	136	TG01	242	105
SX37	631	335	SY49	523	260	TA16	190	86	TF32	295	128	TG02	259	114
SX38	609	310	SY58	306	171	TA17	145	65	TF33	209	91	TG03	268	117
SX39	627	331	SY59	543	282	TA18	5	2	TF34	206	86	TG04	99	42
SX45	71	31	SY67	13	5	TA20	246	107	TF35	305	136	TG10	192	84
SX46	339	158	SY68	637	346	TA21	64	27	TF36	298	134	TG11	192	85
SX47	400	198	SY69	688	374	TA22	229	100	TF37	283	128	TG12	232	104
SX48	383	187	SY78	424	211	TA23	207	92	TF38	241	106	TG13	242	103
SX49	455	233	SY79	702	412	TA24	40	18	TE39	248	110	TG14	48	21
SX54	78	37	SY88	575	308	TA26	2	1	TF40	238	103	TG20	177	77
SX55	343	162	5789	635	348	TA27	21	9	TF41	260	114	TG21	187	79
SX56	450	239	SY97	126	64	TA30	84	37	TF42	200	105	TG22	254	110
SY57	150	255	SVOS	120	204	TA31	30	13	TE43	59	25	TG22	257	109
SY58	402 070	1/13	5190	400	106	TA32	137	50	TE44	57	25	TG25	10	105
SY50	272	167	\$707	26	130	TAZZ	Q Q	z	TE45	240	105	TC30	247	100
2723	222	107	SZU/	20	12	TA 41	0	5	TE40	240 277	105	TCZ1	247	109
SVCA	9	4	5200	142	50	TEOO	520	1	TE 47	410	109	TC72	200	113
3A04	5/6	200	5209	142	02 77	TEO1	JZU	200	TE40	419	133	TC77	209	74
2702	644	330	5219	165	75	TFOR	415	195	1F48	117	95	TC 40	00	34
2866	391	231	5229	165	/4	1F02	291	137	1149	115	49	1640	234	112

Table 1. (continued). Spreadsheet with predicted number of Buzzards per 10-km square in England from the maximum density model (A) and the mean density model (B).

IC41 227 99 IL43 929 744 440 193 744 1040 7024 1040 400 193 TG42 103 TL45 222 101 TL52 204 489 ILM47 206 94 TG43 194 444 TG50 172 T12 IL45 225 105 TG43 229 113 TL46 229 103 TL44 248 114 TL44 248 114 TL44 248 114 TL44 248 115 1151 1515 150 1138 220 113 TL44 248 113 151 1515 1160 1138 224 100 1002 205 233 TL44 244 114 112 1144 124 112 111 112 111 112 1144 1144 112 112 111 112 114 112 112 112 112 112 112	10-km	А	В												
Tc42 110 50 T.44 388 180 1191 238 111 IMM4 208 940 103 1024 234 111 TC51 17 7 T.46 215 95 135 283 134 IMM4 245 111 TQ3 194 94 1100 221 T.47 235 144 1794 224 127 TM67 9 4 704 703 704	TG41	227	99	TL43	509	251	TL90	137	62	TM46	162	75	TQ40	400	199
TOM SD TAS TAS <thtas< th=""> TAS <thtas< th=""></thtas<></thtas<>	TG42	110	50	TL44	385	180	TL91	238	111	TM47	208	94	TQ41	386	194
T63 17 7 T166 275 95 T193 283 134 T1449 243 T11 T043 194 94 T100 221 153 T144 284 127 T147 9 44 T045 522 105 T102 145 153 T148 289 100 T05 290 113 T149 56 21 T045 222 105 T105 194 66 T152 217 T177 513 100 T001 409 197 T048 46 177 T105 194 480 T153 112 144 100 T07 73 33 1003 400 110 210 94 100 102 205 102 206 103 101 101 204 105 103 100 205 103 100 205 103 100 101 20 103 101	TG50	32	13	TL45	232	101	TL92	204	89	TM48	237	103	TQ42	234	111
100 247 112 1147 335 154 1194 224 127 1187 9 4 704 504 123 105 105 124 105 125 105 1184 72 52 1045 52 1165 1194 226 103 1185 115 115 115 115 115 115 115 115 115 116 <td>TG51</td> <td>17</td> <td>7</td> <td>TL46</td> <td>215</td> <td>95</td> <td>TL93</td> <td>283</td> <td>134</td> <td>TM49</td> <td>243</td> <td>111</td> <td>TQ43</td> <td>194</td> <td>94</td>	TG51	17	7	TL46	215	95	TL93	283	134	TM49	243	111	TQ43	194	94
Ind S21 H53 H48 H29 H49 H49 <td>TL00</td> <td>247</td> <td>112</td> <td>TL47</td> <td>335</td> <td>154</td> <td>TL94</td> <td>274</td> <td>127</td> <td>TM57</td> <td>9</td> <td>4</td> <td>TQ44</td> <td>304</td> <td>153</td>	TL00	247	112	TL47	335	154	TL94	274	127	TM57	9	4	TQ44	304	153
142 145 65 T.49 229 100 T.95 230 113 T.M59 56 24 TQ46 122 54 1103 291 113 T150 315 515 515 515 515 719 228 100 TQ01 406 200 TQ49 486 177 10.65 194 865 T.52 214 100 TU99 224 100 TQ02 406 200 TQ49 426 116 TQ51 224 101 1100 555 280 T155 308 443 TM02 210 94 TQ52 512 555 105 TQ53 193 1110 211 94 1157 303 136 TM04 299 138 TQ07 101 39 TQ53 193 1111 303 145 TL60 339 161 TM07 221 TQ08 212 TQ09	TL01	321	153	TL48	298	140	TL95	264	123	TM58	72	32	TQ45	222	105
11.03 291 154 11.50 269 127 11.97 30.3 140 TQ00 215 98 TQ47 56 21 11.04 248 115 TL51 315 150 T198 228 100 TQ01 409 170 1449 156 69 11.06 393 189 TL53 412 199 TM00 73 33 TQ03 430 211 TQ50 247 122 11.07 398 199 TL55 308 140 TM02 210 94 TQ65 203 90 TQ52 208 91 11.0 211 94 TL57 303 156 TM02 229 138 TQ07 101 924 1024 104 104 104 104 104 104 104 105 104 114 105 104 114 105 104 114 105 104 104	TL02	145	65	TL49	229	100	TL96	250	113	TM59	56	24	TQ46	122	54
L1A 248 113 TL51 315 150 TL98 228 101 TQ01 409 197 TQ48 466 177 L06 193 189 TL52 214 100 TL99 TM00 75 33 TQ03 450 211 TQ50 274 102 TL07 398 192 TL54 482 236 TM01 67 31 TQ04 246 116 TQ51 226 98 113 10.06 483 237 TL56 306 143 TM02 220 94 TQ55 TQ5 186 TQ1 113 30 TQ4 125 TQ5 186 TQ5 116 208 102 TQ08 134 TQ5 126 136 171 23 104 TQ5 175 186 TQ5 186 TQ1 128 171 131 170 186 TQ1 128 170 186 1	TL03	291	134	TL50	269	127	TL97	303	140	TQ00	215	98	TQ47	56	21
11.05 194 86 11.52 214 100 11.99 224 100 1702 400 200 TQ49 188 69 11.07 598 192 11.54 442 236 11.00 271 33 TQ03 430 211 TQ03 240 113 TQ0 246 116 TQ13 247 113 TQ04 246 116 TQ13 205 98 TQ22 205 98 TQ12 115 116 TQ14 114 TQ14 114 TQ14 114 TQ14 244 114 114 115 240 115 TM05 225 102 TQ08 134 55 TQ55 183 87 111 303 145 TL59 260 115 TM06 228 105 TQ11 358 TQ15 163 104 104 104 104 116 104 104 104 104 104 104 <td>TL04</td> <td>248</td> <td>113</td> <td>TL51</td> <td>315</td> <td>150</td> <td>TL98</td> <td>228</td> <td>101</td> <td>TQ01</td> <td>409</td> <td>197</td> <td>TQ48</td> <td>46</td> <td>17</td>	TL04	248	113	TL51	315	150	TL98	228	101	TQ01	409	197	TQ48	46	17
11.06 393 189 11.53 412 199 TM00 73 33 TQ36 430 211 TQ50 247 122 TL07 398 192 TL54 442 226 TM01 67 31 TQ04 246 116 TQ50 224 113 TL08 525 280 TL55 306 140 TM03 287 155 TQ06 132 53 TQ53 193 91 TL10 211 94 TL57 303 136 TM04 229 102 TQ08 134 55 TQ56 201 103 113 TM06 286 122 TQ09 233 104 TQ56 201 93 144 141 110 141 243 248 170 173 247 104 240 104 105 101 53 160 103 171 104 141 111 111 111 <t< td=""><td>TL05</td><td>194</td><td>86</td><td>TL52</td><td>214</td><td>100</td><td>TL99</td><td>224</td><td>100</td><td>TQ02</td><td>406</td><td>200</td><td>TQ49</td><td>158</td><td>69</td></t<>	TL05	194	86	TL52	214	100	TL99	224	100	TQ02	406	200	TQ49	158	69
ILO7 398 192 TL54 442 236 TM01 67 31 TQ4 246 118 TQ51 224 113 1L08 553 260 TL55 308 143 TM02 210 94 TQ05 205 100 393 TQ34 216 398 1L10 211 94 TL56 306 1106 1007 101 39 TQ34 214 104 1L1 303 143 TL58 269 119 TM05 225 102 TQ08 134 55 TQ16 398 101 701 393 101 100 122 TQ09 233 104 TQ58 125 701 133 104 TQ58 101 701 132 265 102 104 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 <t< td=""><td>TL06</td><td>393</td><td>189</td><td>TL53</td><td>412</td><td>199</td><td>TM00</td><td>73</td><td>33</td><td>TQ03</td><td>430</td><td>211</td><td>TQ50</td><td>247</td><td>122</td></t<>	TL06	393	189	TL53	412	199	TM00	73	33	TQ03	430	211	TQ50	247	122
The 555 280 TL55 308 143 TM02 210 94 TQ55 203 90 TQ52 205 98 11.09 443 237 TL56 306 140 TM03 227 155 TQ66 101 39 TQ54 124 104 11.1 210 44 TL57 303 136 TM04 299 138 TQ07 101 39 TQ54 124 104 11.1 246 1123 TL59 260 115 TM06 228 102 TQ00 133 TQ57 104 414 410 125 113 TQ11 358 171 TQ52 104 414 110 113 351 166 1163 228 105 1701 358 171 1708 120 124	TL07	398	192	TL54	482	236	TM01	67	31	TQ04	246	116	TQ51	224	113
TL09 448 237 TL56 306 140 TM03 227 135 TQ06 132 53 TQ53 193 91 TL10 211 94 TL57 303 156 TM04 299 138 TO07 101 39 TQ54 214 104 TL11 443 TL58 299 115 TM05 225 102 TQ08 134 55 TQ55 183 877 TL12 443 TL59 Z60 115 TM05 225 113 TO10 182 86 TQ55 104 41 TL4 403 186 TL61 281 170 TM08 228 105 TQ11 482 TQ61 174 105 163 73 TQ62 144 70 TL15 227 TQ53 171 7013 446 206 TQ61 133 145 TQ65 365 146 TM13 71 78 TQ15 163 73 TQ62 194 107 141 147 <td< td=""><td>TL08</td><td>553</td><td>280</td><td>TL55</td><td>308</td><td>143</td><td>TM02</td><td>210</td><td>94</td><td>TQ05</td><td>203</td><td>90</td><td>TQ52</td><td>205</td><td>98</td></td<>	TL08	553	280	TL55	308	143	TM02	210	94	TQ05	203	90	TQ52	205	98
11.10 211 94 TL57 303 136 TM04 299 138 TQ07 101 39 TQ54 214 104 11.1 303 145 TL58 269 119 TM06 225 102 TQ08 154 55 TQ55 183 87 11.2 434 212 TL60 339 161 TM07 221 113 TM06 228 105 TQ11 158 171 TQ58 129 54 11.6 351 166 TL63 228 TM11 106 TQ13 416 206 706 148 709 125 173 146 206 176 174 124 122 TQ61 217 109 118 411 705 123 TQ14 142 142 147 119 133 145 141 141 705 103 141 140 141 705 120 101 141 141 706 101 141 141 706 101 141 14	TL09	483	237	TL56	306	140	TM03	287	135	TQ06	132	53	TQ53	193	91
11.1 503 143 TL58 269 119 TM05 225 102 TQ08 134 55 TQ55 183 87 T1.12 454 212 TL59 260 115 TM06 268 122 TQ09 233 104 TQ56 201 95 T1.13 296 135 TL60 339 161 TM07 251 113 TQ10 182 86 TQ57 104 414 TL15 282 125 TL62 303 144 TM09 242 106 TQ11 548 TQ59 215 97 TL16 351 166 TL63 278 131 TM11 275 123 T14 123 126 126 120 121 124 126 121 126 123 TQ61 127 126 123 197 197 197 110 143 140 1265 100 141	TL10	211	94	TL57	303	136	TM04	299	138	TQ07	101	39	TQ54	214	104
T112 434 212 TL99 260 115 TM06 268 122 TQ09 233 104 TQ56 201 93 TL15 226 135 TL60 339 161 TM07 251 113 TQ10 182 866 TQ57 104 41 TL14 403 186 TL62 203 144 M09 228 105 TQ12 449 248 1059 71 TQ58 129 54 TL15 222 125 TL62 203 144 1109 416 206 TQ60 148 709 TL16 351 166 TL63 278 131 TM11 110 47 7013 416 206 TQ60 109 118 140 17063 109 109 118 114 1703 141 1705 20 101 106 109 114 106 101 106 101 106 101 106 101 106 101 101 104 104 <t< td=""><td>TL11</td><td>303</td><td>143</td><td>TL58</td><td>269</td><td>119</td><td>TM05</td><td>225</td><td>102</td><td>TQ08</td><td>134</td><td>55</td><td>TQ55</td><td>183</td><td>87</td></t<>	TL11	303	143	TL58	269	119	TM05	225	102	TQ08	134	55	TQ55	183	87
TL13 296 155 TL60 339 161 TM07 251 113 TQ10 182 866 TQ57 104 41 TL14 403 1866 TL61 281 129 TM08 228 105 TQ11 358 T17 TQ58 129 54 TL15 351 166 TL63 327 131 TM11 110 47 TQ12 449 224 TQ61 226 TQ61 276 109 71 71 73 TQ61 217 109 114 461 222 TL65 305 146 TM13 171 78 TQ15 163 73 TQ63 197 95 1120 299 124 116 214 106 103 41 TQ63 197 95 1120 299 124 114 106 103 41 TQ63 197 116 111 111 111 110 114 110 114 110 110 111 111 111 111 111 111 <td>TL12</td> <td>434</td> <td>212</td> <td>TL59</td> <td>260</td> <td>115</td> <td>TM06</td> <td>268</td> <td>122</td> <td>TQ09</td> <td>233</td> <td>104</td> <td>TQ56</td> <td>201</td> <td>93</td>	TL12	434	212	TL59	260	115	TM06	268	122	TQ09	233	104	TQ56	201	93
TL14 403 186 TL61 281 129 TM08 228 105 TQ11 358 171 TQ58 129 54 TL15 282 125 TL62 305 144 TM09 422 106 TQ12 492 248 TQ59 215 97 TL16 351 166 TL63 278 131 TM11 110 47 TQ15 446 206 127 700 TL17 511 247 TL66 225 139 TM14 147 65 TQ16 103 41 TQ65 197 95 TL20 269 124 TL67 314 141 TM15 260 120 TQ17 67 27 TQ64 200 94 TL21 264 120 TL68 291 133 TM16 244 110 TQ18 64 17 TQ65 200 94 TL23 329 153 TL70 186 82 TM17 248 10 101 10	TL13	296	135	TL60	339	161	TM07	251	113	TQ10	182	86	TQ57	104	41
TL15282125TL62303144TM09242106TQ12492248TQ5921597TL16351166TL63278131TM1111047TQ13416206TQ6014870TL17511247TL64269128TM12275123TQ14274152TQ61217109TL18461222TL65305416TM1317178TQ16103411TQ6219795TL20269124TL67314141TM15260120TQ176727TQ6420596TL21264120TL68291133TM16244110TQ184617TQ6520094TL23329148TL69265119TM17248111TQ1911849TQ6620291TL23329153TL7018682TM1921794TQ21304149TQ6620291TL24365169TL71283129TM1921794TQ21304149TQ6620291TL25357168TL7221797TM21188TQ22269130TQ6917175TL26336156TL73260122TM227232TQ2	TL14	403	186	TL61	281	129	TM08	228	105	TQ11	358	171	TQ58	129	54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TL15	282	125	TL62	303	144	TM09	242	106	TQ12	492	248	TQ59	215	97
Lit L	TL16	351	166	TL63	278	131	TM11	110	47	TO13	416	206	TQ60	148	70
This Ard Zz This Ard This Ard This	TL17	511	247	TL64	269	128	TM12	275	123	TO14	274	132	TO61	217	109
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TI 18	461	222	TL65	305	146	TM13	171	78	TO15	163	73	TO62	194	95
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TL 19	313	145	TL66	295	139	TM14	147	65	TO16	103	41	TO63	197	95
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TI 20	269	124	TI 67	314	141	TM15	260	120	TO17	67	27	TO64	205	96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TL21	264	120	TL68	291	133	TM16	244	110	TQ18	46	17	TQ65	200	94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TL22	309	148	TL69	265	119	TM17	248	111	TO19	118	49	TO66	201	93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TL23	329	153	TL70	186	82	TM18	235	104	TO20	85	41	TQ67	110	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TL24	363	169	TL71	283	129	TM19	217	94	TO21	304	149	TO68	202	91
TL26 TAG TL73 260 122 TM22 72 32 TAG TA TA <thta< th=""> <thta< th=""> TA</thta<></thta<>	TL25	357	168	TL72	217	97	TM21	18	8	TO22	269	130	TQ69	171	75
TL27 293 132 TL74 253 120 TM23 96 43 TQ24 221 104 TQ71 167 80 TL28 401 186 TL75 429 208 TM24 167 76 TQ25 163 73 TQ72 245 121 TL29 243 108 TL76 416 195 TM25 287 133 TQ26 58 23 TQ73 186 88 TL30 203 89 TL77 428 198 TM26 252 113 TQ77 49 19 TQ74 232 113 TL31 301 138 TL78 235 104 TM27 247 110 TQ8 35 14 TQ75 133 56 TL52 306 147 TL79 329 149 TM28 235 107 TQ9 114 50 TQ76 110 46 TL53 309 195 TL80 200 89 TM29 252 111 TQ31 </td <td>TL26</td> <td>336</td> <td>156</td> <td>TL73</td> <td>260</td> <td>122</td> <td>TM22</td> <td>72</td> <td>32</td> <td>TQ23</td> <td>176</td> <td>83</td> <td>TQ70</td> <td>19</td> <td>9</td>	TL26	336	156	TL73	260	122	TM22	72	32	TQ23	176	83	TQ70	19	9
TL2 Att TL2 Att TL2 T	TL27	293	132	TL74	253	120	TM23	96	43	TO24	221	104	TQ71	167	80
TL29 243 108 TL76 416 195 TM25 287 133 TQ26 58 23 TQ73 186 88 TL30 203 89 TL77 428 198 TM26 252 113 TQ27 49 19 TQ74 232 113 TL31 301 138 TL78 235 104 TM27 247 110 TQ28 35 14 TQ75 133 56 TL32 306 147 TL79 329 149 TM28 235 107 TQ29 114 50 TQ76 110 46 TL33 399 195 TL80 200 89 TM29 252 111 TQ30 124 58 TQ77 166 76 TL34 317 147 TL81 231 104 TM33 23 10 TQ31 302 152 TQ78 83 37 TL35 320 149 TL82 251 114 TM34 193 88 TQ32 </td <td>TL28</td> <td>401</td> <td>186</td> <td>TL75</td> <td>429</td> <td>208</td> <td>TM24</td> <td>167</td> <td>76</td> <td>TQ25</td> <td>163</td> <td>73</td> <td>TQ72</td> <td>245</td> <td>121</td>	TL28	401	186	TL75	429	208	TM24	167	76	TQ25	163	73	TQ72	245	121
TL30 203 89 TL77 428 198 TM26 252 113 TQ27 49 19 TQ74 232 113 TL31 301 138 TL78 235 104 TM27 247 110 TQ28 35 14 TQ75 133 56 TL32 306 147 TL79 329 149 TM28 235 107 TQ29 114 50 TQ76 110 46 TL33 399 195 TL80 200 89 TM29 252 111 TQ30 124 58 TQ77 166 76 TL34 317 147 TL81 231 104 TM33 23 10 TQ31 302 152 TQ78 83 37 TL35 320 149 TL82 251 114 TM34 193 88 TQ32 251 117 TQ79 193 83 TL35 320 149 TL82 251 114 TM35 258 119 TQ33	TL29	243	108	TL76	416	195	TM25	287	133	TQ26	58	23	TQ73	186	88
TL31 301 138 TL78 235 104 TM27 247 110 TQ28 35 14 TQ75 133 56 TL32 306 147 TL79 329 149 TM28 235 107 TQ29 114 50 TQ76 110 46 TL33 399 195 TL80 200 89 TM29 252 111 TQ30 124 58 TQ77 166 76 TL34 317 147 TL81 231 104 TM33 23 10 TQ31 302 152 TQ78 83 37 TL35 320 149 TL82 251 114 TM34 193 88 TQ32 251 117 TQ79 193 83 TL36 294 135 TL83 280 129 TM35 258 119 TQ33 231 108 TQ81 171 85 TL37 264 118 TL84 238 109 TM37 259 114 TQ	TL30	203	89	TL77	428	198	TM26	252	113	TQ27	49	19	TQ74	232	113
TL32 306 147 TL79 329 149 TM28 235 107 TQ29 114 50 TQ76 110 46 TL33 399 195 TL80 200 89 TM29 252 111 TQ30 124 58 TQ77 166 76 TL34 317 147 TL81 231 104 TM33 23 10 TQ31 302 152 TQ78 83 37 TL35 320 149 TL82 251 114 TM34 193 88 TQ32 251 117 TQ79 193 83 TL36 294 135 TL83 280 129 TM35 258 119 TQ33 231 108 TQ81 171 85 TL37 264 118 TL84 238 109 TM36 237 108 TQ34 223 106 TQ82 214 107 TL38 262 118 TL85 318 149 TM37 259 114 <td< td=""><td>TL31</td><td>301</td><td>138</td><td>TL78</td><td>235</td><td>104</td><td>TM27</td><td>247</td><td>110</td><td>TO28</td><td>35</td><td>14</td><td>T075</td><td>133</td><td>56</td></td<>	TL31	301	138	TL78	235	104	TM27	247	110	TO28	35	14	T075	133	56
TL33 399 195 TL80 200 89 TM29 252 111 TQ30 124 58 TQ77 166 76 TL34 317 147 TL81 231 104 TM33 23 10 TQ31 302 152 TQ78 83 37 TL35 320 149 TL82 251 114 TM34 193 88 TQ32 251 117 TQ79 193 83 TL36 294 135 TL83 280 129 TM35 258 119 TQ33 231 108 TQ81 171 85 TL37 264 118 TL84 238 109 TM36 237 108 TQ34 223 106 TQ82 214 107 TL38 262 118 TL85 318 149 TM37 259 114 TQ35 200 86 TQ83 192 95 TL39 281 127 TL86 231 109 TM38 228 101 <td< td=""><td>TL32</td><td>306</td><td>147</td><td>TL79</td><td>329</td><td>149</td><td>TM28</td><td>235</td><td>107</td><td>TO29</td><td>114</td><td>50</td><td>TQ76</td><td>110</td><td>46</td></td<>	TL32	306	147	TL79	329	149	TM28	235	107	TO29	114	50	TQ76	110	46
TL34 317 147 TL81 231 104 TM33 23 10 TQ31 302 152 TQ78 83 37 TL35 320 149 TL82 251 114 TM34 193 88 TQ32 251 117 TQ79 193 83 TL36 294 135 TL83 280 129 TM35 258 119 TQ33 231 108 TQ81 171 85 TL37 264 118 TL84 238 109 TM36 237 108 TQ34 223 106 TQ82 214 107 TL38 262 118 TL85 318 149 TM37 259 114 TQ35 200 86 TQ83 192 95 TL39 281 127 TL86 231 109 TM38 228 101 TQ36 65 27 TQ84 223 110 TL40 226 100 TL87 257 117 TM39 310 137 <t< td=""><td>TL33</td><td>399</td><td>195</td><td>TL80</td><td>200</td><td>89</td><td>TM29</td><td>252</td><td>111</td><td>TQ30</td><td>124</td><td>58</td><td>TQ77</td><td>166</td><td>76</td></t<>	TL33	399	195	TL80	200	89	TM29	252	111	TQ30	124	58	TQ77	166	76
TL35 320 149 TL82 251 114 TM34 193 88 TQ32 251 117 TQ79 193 83 TL36 294 135 TL83 280 129 TM35 258 119 TQ33 231 108 TQ81 171 85 TL37 264 118 TL84 238 109 TM36 237 108 TQ34 223 106 TQ82 214 107 TL38 262 118 TL85 318 149 TM37 259 114 TQ35 200 86 TQ83 192 95 TL39 281 127 TL86 231 109 TM38 228 101 TQ36 65 27 TQ84 223 110 TL40 226 100 TL87 257 117 TM39 310 137 TQ37 34 13 TQ85 213 101 TL40 226 100 TL88 204 91 TM44 15 6	TL34	317	147	TL81	231	104	TM33	23	10	TO31	302	152	TQ78	83	37
TL36 294 135 TL83 280 129 TM35 258 119 TQ33 231 108 TQ81 171 85 TL37 264 118 TL84 238 109 TM36 237 108 TQ34 223 106 TQ82 214 107 TL38 262 118 TL85 318 149 TM37 259 114 TQ35 200 86 TQ83 192 95 TL39 281 127 TL86 231 109 TM38 228 101 TQ36 65 27 TQ84 223 110 TL40 226 100 TL87 257 117 TM39 310 137 TQ37 34 13 TQ85 213 101 TL40 226 100 TL87 257 117 TM39 310 137 TQ37 34 13 TQ85 213 101 TL41 251 115 TL88 204 91 TM44 15 6	TL35	320	149	TL82	251	114	TM34	193	88	TO32	251	117	TO79	193	83
TL37 264 118 TL84 238 109 TM36 237 108 TQ34 223 106 TQ82 214 107 TL38 262 118 TL85 318 149 TM37 259 114 TQ35 200 86 TQ83 192 95 TL39 281 127 TL86 231 109 TM38 228 101 TQ36 65 27 TQ84 223 110 TL40 226 100 TL87 257 117 TM39 310 137 TQ37 34 13 TQ85 213 101 TL41 251 115 TL88 204 91 TM44 15 6 TQ38 33 13 TQ86 164 75 TL42 362 180 TL89 371 182 TM45 111 52 TQ39 74 30 TQ87 74 34	TL36	294	135	TL83	280	129	TM35	258	119	TO33	231	108	TO81	171	85
TL38262118TL85318149TM37259114TQ3520086TQ8319295TL39281127TL86231109TM38228101TQ366527TQ84223110TL40226100TL87257117TM39310137TQ373413TQ85213101TL41251115TL8820491TM44156TQ383313TQ8616475TL42362180TL89371182TM4511152TQ397430TQ877434	TL37	264	118	TL84	238	109	TM36	237	108	TQ34	223	106	TQ82	214	107
TL39 281 127 TL86 231 109 TM38 228 101 TQ36 65 27 TQ84 223 110 TL40 226 100 TL87 257 117 TM39 310 137 TQ37 34 13 TQ85 213 101 TL41 251 115 TL88 204 91 TM44 15 6 TQ38 33 13 TQ86 164 75 TL42 362 180 TL89 371 182 TM45 111 52 TQ39 74 30 TQ87 74 34	TL38	262	118	TL85	318	149	TM37	259	114	TO35	200	86	TO83	192	95
TL40 226 100 TL87 257 117 TM39 310 137 TQ37 34 13 TQ85 213 101 TL41 251 115 TL88 204 91 TM44 15 6 TQ38 33 13 TQ86 164 75 TL42 362 180 TL89 371 182 TM45 111 52 TQ39 74 30 TQ87 74 34	TI 39	281	127	TL86	231	109	TM38	228	101	TO36	65	27	TO84	223	110
TL41 251 115 TL88 204 91 TM44 15 6 TQ38 33 13 TQ86 164 75 TL42 362 180 TL89 371 182 TM45 111 52 TQ39 74 30 TQ87 74 34	TL40	226	100	TL87	257	117	TM39	310	137	TQ37	34	13	TQ85	213	101
TL42 362 180 TL89 371 182 TM45 111 52 TQ39 74 30 TQ87 74 34	TL41	251	115	TL88	204	91	TM44	15	6	TQ38	33	13	TQ86	164	75
	TL42	362	180	TL89	371	182	TM45	111	52	TQ39	74	30	TQ87	74	34

Table 1. (continued). Spreadsheet with predicted
number of Buzzards per 10-km square in England from
the maximum density model (A) and the mean density
model (B).

-	10-km	А	В
	TQ88	39	15
	TQ89	282	136
	TQ91	39	18
	TQ92	254	124
	TQ93	299	148
	TQ94	316	154
	TQ95	473	243
	TQ96	136	67
	TQ97	13	9
	TQ98	60	26
	TQ99	196	94
	TR01	28	13
	TR02	205	94
	TR03	248	118
	TR04	259	124
	TR05	238	114
	TR06	98	46
	TR07	2	2
	TR09	52	25
	TR13	117	57
	TR14	192	94
	TR15	177	82
	TR16	127	58
	TR23	30	14
	TR24	258	128
	TR25	300	142
	TR26	241	112
	TR34	117	53
	TR35	152	70
	TR36	113	50
	TR37	1	0
	TV49	0	0
	TV59	67	33
	TV69	1	0

APPENDIX C

Map showing how population trends (blue line and shading) and modelled saturation densities (red line and shading from maximum density model, yellow line and shading from mean density model) vary by 100-km square across England when predictions are averaged only across surveyed squares where Buzzards were reported at least once during the BBS time series and thus contributing to the trend line. Trends, which are all plotted to the same x-axis scale (1994–2017) and y-axis scale (0–7 birds km⁻²) are based on a simple model of annual Buzzard densities in BBS squares with 95% confidence limits shown by blue shading.

MMA

Images: Edmund Fellowes, Edmund Fellowes, Gary Haigh. Cover image: Edmund Fellowes.

Potential future distribution and abundance patterns of Common Buzzards Buteo buteo

To contribute towards the definition of Favourable Conservation Status for the Common Buzzard *Buteo buteo*, estimates of local carrying capacity are required throughout England. In this report we aim to assess the potential for future expansion of the Buzzard breeding range in England and forecast potential densities in 10-km squares using species distribution models.

We can be highly confident about the extent of the Buzzards breeding range and its limited scope to expand further. The species distribution models are as robust as we can expect with the data available and they perform comparably to other models of abundance. However, many of the predicted densities are high compared to those in the literature, although it should be noted many of these are quite old and limiting factors may have reduced since then.

Jennifer A. Border, Dario Massimino & Simon Gillings. (2018).Potential future distribution and abundance patterns of Common Buzzards *Buteo buteo*. BTO Research Report **707**, BTO, Thetford, UK.

