Implicit assumptions underlying simple harvest models of marine bird populations can mislead environmental management decisions

Author(s): O'Brien, S.H., Cook, A.S.C.P. & Robinson, R.A.
Published: 2017
Journal: Journal of Environmental Management
Pages: 163 - 171
Digital Identifier No.: 10.1016/j.jenvman.2017.06.037


Assessing the potential impact of additional mortality from anthropogenic causes on animal populations requires detailed demographic information. However, these data are frequently lacking, making simple algorithms, which require little data, appealing. Because of their simplicity, these algorithms often rely on implicit assumptions, some of which may be quite restrictive. Potential Biological Removal (PBR) is a simple harvest model that estimates the number of additional mortalities that a population can theoretically sustain without causing population extinction. However, PBR relies on a number of implicit assumptions, particularly around density dependence and population trajectory that limit its applicability in many situations. Among several uses, it has been widely employed in Europe in Environmental Impact Assessments (EIA), to examine the acceptability of potential effects of offshore wind farms on marine bird populations. As a case study, we use PBR to estimate the number of additional mortalities that a population with characteristics typical of a seabird population can theoretically sustain. We incorporated this level of additional mortality within Leslie matrix models to test assumptions within the PBR algorithm about density dependence and current population trajectory. Our analyses suggest that the PBR algorithm identifies levels of mortality which cause population declines for most population trajectories and forms of population regulation. Consequently, we recommend that practitioners do not use PBR in an EIA context for offshore wind energy developments. Rather than using simple algorithms that rely on potentially invalid implicit assumptions, we recommend use of Leslie matrix models for assessing the impact of additional mortality on a population, enabling the user to explicitly define assumptions and test their importance.

Publication links