Wider Countryside Report Header
BTO Blueline
Main WCR menu image Site navigation menu item Results overview menu item Other info menu item BTO website menu item
BTO Blueline
BBWC Home > Contents > Methodology > The Alert System

2.8 The Alert System

2.8.1 General approach
2.8.2 Smoothing population trends
2.8.3 Years used for analysis
2.8.4 Confidence limits and statistical testing
2.8.5 Data-deficient species
2.8.6 Application to individual schemes

2.8.1 General approach

The alert system used within this report is designed to draw attention to developing population declines that may be of conservation concern. It also identifies situations where long-term declines have reversed, leading to an improvement in conservation status. It must be stressed that the changes reported here are advisory and do not supersede the agreed UK conservation listings (Gregory et al. 2002; see PSoB pages). They are based on similar criteria to The Population Status of Birds in the UK, however, and so provide an indication of likely changes at future revisions.

The system is based on statistical analyses of the population trend data for individual species. Alerts seek to identify rapid declines (>50%) and moderate declines (>25% but <50%). These declines are measured over a number of time-scales, depending on the availability of data - the full length of the available time series, and the most recent 25 years, 10 years and 5 years for which change can be estimated. The conservation emphasis is particularly on the longer periods, but short-term changes help to separate declines that are continuing - or accelerating - from those that have ceased or reversed.

The alerts are calculated annually using standard automated procedures. Where species are at the margin of two categories (e.g. a decline of about 25%) they may fire alerts in some years but not others, or different levels of alert in different years.

Data on some species might be biased, owing to unrepresentative monitoring, or imprecise, owing to small sample sizes. Because these data often provide the only information that is available, our general approach is to report all the alerts raised but to clearly flag up any deficiencies in the data.

2.8.2 Smoothing population trends

Bird populations show long-term changes that do not follow simple mathematical trajectories. In addition to the long-term trends, unsmoothed population indices also show short-term fluctuations resulting from a combination of natural population variability and statistical error. We use smoothing techniques that aim to extract the long-term pattern of population change, without forcing it to follow any particular shape (such as a straight line or a polynomial curve). These methods remove most of the effects of short-term fluctuations (including any natural year-to-year variability) so that the long-term trend is revealed more clearly.

Technical details available here

2.8.3 Years used for analysis

Once a smoothed population trend has been calculated, change measures are calculated from the ratio of the smoothed population indices for the two years of interest. Population indices for the first and last years of a smoothed time series are less reliable than the others, and so we always drop them before calculating alerts. Because the latest year is not included, the alerts are therefore less up-to-date than they could be, but fewer false alarms are generated. The latest year's data points do contribute to the smoothed curve and are dropped only after the smoothing has taken place.

The time taken to collate and analyse bird monitoring data is another factor affecting the years that can be included in these analyses. Full analyses of data sets are not usually all available until 12-15 months after the end of a particular breeding season. This report was prepared in 2004 when we had analyses of monitoring data up to 2003. As we drop the final year of the smoothed time series, we report here on change measures up to 2002.

Long-term changes for most of the species included in this report are calculated from joint Common Birds Census and Breeding Bird Survey data (CBC/BBS indices). The CBC started on farmland in 1962 and on woodland in 1964. However, the early years of the CBC population indices are strongly influenced by the effects of the unusually severe winters of 1961/62 and 1962/63, as well as by developments in methodology (Marchant et al. 1990). Therefore joint CBC/BBS indices have been calculated using the data from 1966 onwards and population changes are calculated back to 1967.

Data for other schemes generally start as soon as the scheme had reached a sufficient size to produce reliable results. The maximum periods available from the main schemes contributing to this report are set out in the table below.

Scheme
Years available
Maximum alert period
First year
Last year
First year
Last year
Number
of years
CBC/BBS
1966
2003
1967
2002
35
Waterways Bird Survey
1974
2003
1975
2002
27
Constant Effort Sites
1983
2003
1984
2002
18
Heronries Census
1928
2003
1929
2002
73
Breeding Bird Survey
1994
2003
-
-
-

2.8.4 Confidence limits and statistical testing

We show 90% confidence limits for population change measures wherever possible. Any decline where the confidence limits do not overlap zero (no change) is regarded as statistically significant and will trigger an alert if it is of sufficient magnitude. Note that, because we are seeking to detect only declines, we are using a one-tailed test - with a P value of 0.05. These confidence limits therefore do not indicate whether increases are statistically significant.

The graphs of population trends show 85% confidence limits because these allow an approximate visual test of whether the difference between the indices for any two given years is statistically significant: if the indices for two given years are assumed independent and normally distributed with standard errors of comparable size (standard errors differing by a factor of up to about 2 are quite acceptable), then to a good approximation the difference between the indices is significant at the 5% level if there is no overlap in their 85% confidence intervals (Buckland et al. 1992). This test is fairly robust, and the independence assumption is reasonable if the years are some distance apart.

Technical details available here

2.8.5 Data-deficient species

There is uncertainty about the reliability of the results for some species, either because data may be unrepresentative or because they are based on a very small sample of plots. In these cases the cause of the uncertainty is recorded in the comment column of the population change table.

Unrepresentative data

In this report we only present joint UK or England CBC/BBS trends if there was no substantial or statistical difference between the trends from the two schemes over the period when they ran in parallel. Thus the trends are always considered representative of the region concerned.

In previous reports representativeness was assessed using the criteria developed by Gibbons et al. (1993). Data from the 1988-91 Breeding Atlas were used to compare the average abundance of a given species in 10-km squares with and without CBC plots. If average abundance is higher in squares without CBC plots, it is likely that much of the population is not well sampled by the CBC. In past reports, CBC data for such species were labelled as "unrepresentative". Where there are insufficient data to undertake such calculations, expert opinion was used.

Sample size

Sample size is assessed from the average number of plots contributing to the population indices for a given species in each year. A plot with a zero count would be included provided that the species had been recorded there in at least one year and that records for that plot were available for at least two years. Plots where a species has never been recorded do not enter the index calculations. These average sample sizes are shown in column four (plots) of the population change tables. For CBC, WBS and CES, a mean of between 10 and 19 plots is flagged as a small sample. For BBS indices for individual countries a mean in the range 30-39 plots is flagged as a small sample. UK BBS indices are only presented for samples of at least 40 plots.

2.8.6 Application to individual schemes

Currently the full methodology outlined above is applied to the CBC/BBS and the WBS trends. For the CES scheme and the Heronries census we present annual indices with confidence limits and then fit a smoothed curve through the annual index values. We do not currently have confidence limits for this smoothed curve. Therefore all alert labels for CES are shown in square brackets. There are no alerts for Grey Heron.

BBS started in 1994 so only nine years' data (1994-2003) were available for this report. This is not a long enough time series to apply the smoothing methods and alerts framework outlined above. Therefore we have simply calculated change measures between the first and last years of the BBS time series based on the standard 'sites x years' model that is used to produce the BBS indices each year.

Technical details available here

Next - 2.9 Statistical methods used for alerts

Back to Methodology Index

BTO blue divider
BirdWeb logo, click to go to BirdWeb

BTO Home | JNCC Home
BTO, The Nunnery, Thetford, Norfolk IP24 2PU, UK.
 © British Trust for Ornithology (Registered Charity Number 216652).
Terms and Conditions
| Privacy Statement          Email:


This report should be cited as:
Baillie, S.R., Marchant, J.H., Crick, H.Q.P., Noble, D.G., Balmer, D.E., Beaven, L.P., Coombes, R.H.,
Downie, I.S., Freeman, S.N., Joys, A.C., Leech, D.I., Raven, M.J., Robinson, R.A. and Thewlis, R.M. (2005)
Breeding Birds in the Wider Countryside: their conservation status 2004.
BTO Research Report No. 385. BTO, Thetford. (http://www.bto.org/birdtrends)

Pages maintained by Susan Waghorn and Iain Downie: Last updated 18 January, 2006